Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the minimum value of the function 
f(x)=2x^(2)-11.4 x+21 to the nearest hundredth.
Answer:

Find the minimum value of the function f(x)=2x211.4x+21 f(x)=2 x^{2}-11.4 x+21 to the nearest hundredth.\newlineAnswer:

Full solution

Q. Find the minimum value of the function f(x)=2x211.4x+21 f(x)=2 x^{2}-11.4 x+21 to the nearest hundredth.\newlineAnswer:
  1. Find Vertex Form: To find the minimum value of the quadratic function f(x)=2x211.4x+21f(x) = 2x^2 - 11.4x + 21, we need to find the vertex of the parabola. The vertex form of a quadratic function is f(x)=a(xh)2+kf(x) = a(x - h)^2 + k, where (h,k)(h, k) is the vertex of the parabola. Since the coefficient of x2x^2 is positive, the parabola opens upwards, and the vertex represents the minimum point.
  2. Calculate x-coordinate: The x-coordinate of the vertex hh can be found using the formula h=b2ah = -\frac{b}{2a}, where aa is the coefficient of x2x^2 and bb is the coefficient of xx in the standard form of the quadratic function. For the given function, a=2a = 2 and b=11.4b = -11.4.
  3. Calculate y-coordinate: Let's calculate the x-coordinate of the vertex:\newlineh=(11.4)/(2×2)=11.4/4=2.85h = -(-11.4) / (2 \times 2) = 11.4 / 4 = 2.85
  4. Substitute into Function: Now that we have the xx-coordinate of the vertex, we can find the yy-coordinate (kk) by substituting hh back into the original function:\newlinef(2.85)=2(2.85)211.4(2.85)+21f(2.85) = 2(2.85)^2 - 11.4(2.85) + 21
  5. Calculate Minimum Value: Let's perform the calculation:\newlinef(2.85)=2(8.1225)32.49+21f(2.85) = 2(8.1225) - 32.49 + 21\newlinef(2.85)=16.24532.49+21f(2.85) = 16.245 - 32.49 + 21\newlinef(2.85)=16.245+21f(2.85) = -16.245 + 21\newlinef(2.85)=4.755f(2.85) = 4.755
  6. Calculate Minimum Value: Let's perform the calculation:\newlinef(2.85)=2(8.1225)32.49+21f(2.85) = 2(8.1225) - 32.49 + 21\newlinef(2.85)=16.24532.49+21f(2.85) = 16.245 - 32.49 + 21\newlinef(2.85)=16.245+21f(2.85) = -16.245 + 21\newlinef(2.85)=4.755f(2.85) = 4.755The minimum value of the function to the nearest hundredth is therefore 4.764.76, as we round 4.7554.755 to the nearest hundredth.

More problems from Find trigonometric functions using a calculator