Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the minimum value of the function 
f(x)=1.7x^(2)+24.1 x+89 to the nearest hundredth.
Answer:

Find the minimum value of the function f(x)=1.7x2+24.1x+89 f(x)=1.7 x^{2}+24.1 x+89 to the nearest hundredth.\newlineAnswer:

Full solution

Q. Find the minimum value of the function f(x)=1.7x2+24.1x+89 f(x)=1.7 x^{2}+24.1 x+89 to the nearest hundredth.\newlineAnswer:
  1. Find Vertex Coefficients: To find the minimum value of the quadratic function f(x)=1.7x2+24.1x+89f(x) = 1.7x^2 + 24.1x + 89, we need to find the vertex of the parabola. The xx-coordinate of the vertex can be found using the formula b2a-\frac{b}{2a}, where aa and bb are the coefficients from the quadratic equation ax2+bx+cax^2 + bx + c.
  2. Calculate X-coordinate: First, we identify the coefficients aa and bb from the function f(x)=1.7x2+24.1x+89f(x) = 1.7x^2 + 24.1x + 89. Here, a=1.7a = 1.7 and b=24.1b = 24.1.
  3. Substitute XX into Function: Next, we apply the formula to find the xx-coordinate of the vertex: x=b2a=24.12×1.7x = -\frac{b}{2a} = -\frac{24.1}{2 \times 1.7}.
  4. Calculate Minimum Value: Calculating the xx-coordinate gives us x=24.1/3.4=7.088235294117647x = -24.1 / 3.4 = -7.088235294117647.
  5. Calculate Minimum Value: Calculating the x-coordinate gives us x=24.13.4=7.088235294117647x = \frac{-24.1}{3.4} = -7.088235294117647.Now that we have the x-coordinate of the vertex, we can find the minimum value of the function by substituting xx back into the original equation f(x)=1.7x2+24.1x+89f(x) = 1.7x^2 + 24.1x + 89.
  6. Calculate Minimum Value: Calculating the x-coordinate gives us x=24.13.4=7.088235294117647x = \frac{-24.1}{3.4} = -7.088235294117647.Now that we have the x-coordinate of the vertex, we can find the minimum value of the function by substituting xx back into the original equation f(x)=1.7x2+24.1x+89f(x) = 1.7x^2 + 24.1x + 89.Substituting x=7.088235294117647x = -7.088235294117647 into the function gives us f(7.088235294117647)=1.7(7.088235294117647)2+24.1(7.088235294117647)+89f(-7.088235294117647) = 1.7(-7.088235294117647)^2 + 24.1(-7.088235294117647) + 89.
  7. Calculate Minimum Value: Calculating the x-coordinate gives us x=24.13.4=7.088235294117647x = \frac{-24.1}{3.4} = -7.088235294117647.Now that we have the x-coordinate of the vertex, we can find the minimum value of the function by substituting xx back into the original equation f(x)=1.7x2+24.1x+89f(x) = 1.7x^2 + 24.1x + 89.Substituting x=7.088235294117647x = -7.088235294117647 into the function gives us f(7.088235294117647)=1.7(7.088235294117647)2+24.1(7.088235294117647)+89f(-7.088235294117647) = 1.7(-7.088235294117647)^2 + 24.1(-7.088235294117647) + 89.Performing the calculations, we get f(7.088235294117647)=1.7(50.244)170.825+89f(-7.088235294117647) = 1.7(50.244) - 170.825 + 89.
  8. Calculate Minimum Value: Calculating the x-coordinate gives us x=24.13.4=7.088235294117647x = \frac{-24.1}{3.4} = -7.088235294117647.Now that we have the x-coordinate of the vertex, we can find the minimum value of the function by substituting xx back into the original equation f(x)=1.7x2+24.1x+89f(x) = 1.7x^2 + 24.1x + 89.Substituting x=7.088235294117647x = -7.088235294117647 into the function gives us f(7.088235294117647)=1.7(7.088235294117647)2+24.1(7.088235294117647)+89f(-7.088235294117647) = 1.7(-7.088235294117647)^2 + 24.1(-7.088235294117647) + 89.Performing the calculations, we get f(7.088235294117647)=1.7(50.244)170.825+89f(-7.088235294117647) = 1.7(50.244) - 170.825 + 89.Further simplifying, we get f(7.088235294117647)=85.4148170.825+89f(-7.088235294117647) = 85.4148 - 170.825 + 89.
  9. Calculate Minimum Value: Calculating the x-coordinate gives us x=24.13.4=7.088235294117647x = \frac{-24.1}{3.4} = -7.088235294117647.Now that we have the x-coordinate of the vertex, we can find the minimum value of the function by substituting xx back into the original equation f(x)=1.7x2+24.1x+89f(x) = 1.7x^2 + 24.1x + 89.Substituting x=7.088235294117647x = -7.088235294117647 into the function gives us f(7.088235294117647)=1.7(7.088235294117647)2+24.1(7.088235294117647)+89f(-7.088235294117647) = 1.7(-7.088235294117647)^2 + 24.1(-7.088235294117647) + 89.Performing the calculations, we get f(7.088235294117647)=1.7(50.244)170.825+89f(-7.088235294117647) = 1.7(50.244) - 170.825 + 89.Further simplifying, we get f(7.088235294117647)=85.4148170.825+89f(-7.088235294117647) = 85.4148 - 170.825 + 89.Finally, we add the numbers to get the minimum value: f(7.088235294117647)=85.4148170.825+89=3.5898f(-7.088235294117647) = 85.4148 - 170.825 + 89 = 3.5898.
  10. Calculate Minimum Value: Calculating the x-coordinate gives us x=24.13.4=7.088235294117647x = \frac{-24.1}{3.4} = -7.088235294117647.Now that we have the x-coordinate of the vertex, we can find the minimum value of the function by substituting xx back into the original equation f(x)=1.7x2+24.1x+89f(x) = 1.7x^2 + 24.1x + 89.Substituting x=7.088235294117647x = -7.088235294117647 into the function gives us f(7.088235294117647)=1.7(7.088235294117647)2+24.1(7.088235294117647)+89f(-7.088235294117647) = 1.7(-7.088235294117647)^2 + 24.1(-7.088235294117647) + 89.Performing the calculations, we get f(7.088235294117647)=1.7(50.244)170.825+89f(-7.088235294117647) = 1.7(50.244) - 170.825 + 89.Further simplifying, we get f(7.088235294117647)=85.4148170.825+89f(-7.088235294117647) = 85.4148 - 170.825 + 89.Finally, we add the numbers to get the minimum value: f(7.088235294117647)=85.4148170.825+89=3.5898f(-7.088235294117647) = 85.4148 - 170.825 + 89 = 3.5898.Rounding to the nearest hundredth, the minimum value of the function is approximately 3.593.59.

More problems from Find trigonometric functions using a calculator