Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the minimum value of the function 
f(x)=0.9x^(2)+5.6 x+16 to the nearest hundredth.
Answer:

Find the minimum value of the function f(x)=0.9x2+5.6x+16 f(x)=0.9 x^{2}+5.6 x+16 to the nearest hundredth.\newlineAnswer:

Full solution

Q. Find the minimum value of the function f(x)=0.9x2+5.6x+16 f(x)=0.9 x^{2}+5.6 x+16 to the nearest hundredth.\newlineAnswer:
  1. Identify Coefficients: To find the minimum value of the quadratic function f(x)=0.9x2+5.6x+16f(x) = 0.9x^2 + 5.6x + 16, we need to find the vertex of the parabola. The xx-coordinate of the vertex can be found using the formula b2a-\frac{b}{2a}, where aa is the coefficient of x2x^2 and bb is the coefficient of xx.
  2. Calculate x-coordinate: First, we identify the coefficients aa and bb from the function f(x)=0.9x2+5.6x+16f(x) = 0.9x^2 + 5.6x + 16. Here, a=0.9a = 0.9 and b=5.6b = 5.6.
  3. Find y-coordinate: Next, we calculate the x-coordinate of the vertex using the formula b2a-\frac{b}{2a}. Plugging in the values, we get 5.62×0.9-\frac{5.6}{2\times0.9}.
  4. Substitute xx into function: Performing the calculation, we get 5.61.8-\frac{5.6}{1.8}, which equals 3.111111-3.111111\ldots
  5. Calculate minimum value: Now that we have the xx-coordinate of the vertex, we can find the yy-coordinate, which is the minimum value of the function, by plugging the xx-coordinate back into the original function f(x)f(x).
  6. Round to nearest hundredth: We substitute x=3.111111...x = -3.111111... into the function f(x)=0.9x2+5.6x+16f(x) = 0.9x^2 + 5.6x + 16 to get f(3.111111...)=0.9(3.111111...)2+5.6(3.111111...)+16f(-3.111111...) = 0.9(-3.111111...)^2 + 5.6(-3.111111...) + 16.
  7. Round to nearest hundredth: We substitute x=3.111111...x = -3.111111... into the function f(x)=0.9x2+5.6x+16f(x) = 0.9x^2 + 5.6x + 16 to get f(3.111111...)=0.9(3.111111...)2+5.6(3.111111...)+16f(-3.111111...) = 0.9(-3.111111...)^2 + 5.6(-3.111111...) + 16. Calculating the value, we get f(3.111111...)=0.9(9.679012...)17.422222...+16f(-3.111111...) = 0.9(9.679012...) - 17.422222... + 16.
  8. Round to nearest hundredth: We substitute x=3.111111...x = -3.111111... into the function f(x)=0.9x2+5.6x+16f(x) = 0.9x^2 + 5.6x + 16 to get f(3.111111...)=0.9(3.111111...)2+5.6(3.111111...)+16f(-3.111111...) = 0.9(-3.111111...)^2 + 5.6(-3.111111...) + 16. Calculating the value, we get f(3.111111...)=0.9(9.679012...)17.422222...+16f(-3.111111...) = 0.9(9.679012...) - 17.422222... + 16. Further simplifying, we get f(3.111111...)=8.711111...17.422222...+16f(-3.111111...) = 8.711111... - 17.422222... + 16.
  9. Round to nearest hundredth: We substitute x=3.111111x = -3.111111\ldots into the function f(x)=0.9x2+5.6x+16f(x) = 0.9x^2 + 5.6x + 16 to get f(3.111111)=0.9(3.111111)2+5.6(3.111111)+16f(-3.111111\ldots) = 0.9(-3.111111\ldots)^2 + 5.6(-3.111111\ldots) + 16. Calculating the value, we get f(3.111111)=0.9(9.679012)17.422222+16f(-3.111111\ldots) = 0.9(9.679012\ldots) - 17.422222\ldots + 16. Further simplifying, we get f(3.111111)=8.71111117.422222+16f(-3.111111\ldots) = 8.711111\ldots - 17.422222\ldots + 16. Finally, we get f(3.111111)=7.288889f(-3.111111\ldots) = 7.288889\ldots
  10. Round to nearest hundredth: We substitute x=3.111111x = -3.111111\ldots into the function f(x)=0.9x2+5.6x+16f(x) = 0.9x^2 + 5.6x + 16 to get f(3.111111)=0.9(3.111111)2+5.6(3.111111)+16f(-3.111111\ldots) = 0.9(-3.111111\ldots)^2 + 5.6(-3.111111\ldots) + 16. Calculating the value, we get f(3.111111)=0.9(9.679012)17.422222+16f(-3.111111\ldots) = 0.9(9.679012\ldots) - 17.422222\ldots + 16. Further simplifying, we get f(3.111111)=8.71111117.422222+16f(-3.111111\ldots) = 8.711111\ldots - 17.422222\ldots + 16. Finally, we get f(3.111111)=7.288889f(-3.111111\ldots) = 7.288889\ldots Rounding to the nearest hundredth, the minimum value of the function is approximately 7.297.29.

More problems from Find trigonometric functions using a calculator