Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the maximum value of the function 
f(x)=-1.7x^(2)+5x-0.9 to the nearest hundredth.
Answer:

Find the maximum value of the function f(x)=1.7x2+5x0.9 f(x)=-1.7 x^{2}+5 x-0.9 to the nearest hundredth.\newlineAnswer:

Full solution

Q. Find the maximum value of the function f(x)=1.7x2+5x0.9 f(x)=-1.7 x^{2}+5 x-0.9 to the nearest hundredth.\newlineAnswer:
  1. Find Vertex: To find the maximum value of the quadratic function f(x)=1.7x2+5x0.9f(x) = -1.7x^2 + 5x - 0.9, we need to find the vertex of the parabola. Since the coefficient of x2x^2 is negative, the parabola opens downwards, and the vertex will give us the maximum value. The xx-coordinate of the vertex can be found using the formula b2a-\frac{b}{2a}, where aa is the coefficient of x2x^2 and bb is the coefficient of xx.
  2. Calculate x-coordinate: First, we calculate the x-coordinate of the vertex using the formula b2a-\frac{b}{2a}. Here, a=1.7a = -1.7 and b=5b = 5.
    x-coordinate of the vertex = b2a-\frac{b}{2a} = 52×1.7-\frac{5}{2 \times -1.7} = 53.4-\frac{5}{-3.4} = 11.4705882352947058823529...
  3. Round x-coordinate: Now we round the x-coordinate to the nearest hundredth. \newlinexx-coordinate of the vertex 1.47\approx 1.47
  4. Substitute xx into function: Next, we substitute x=1.47x = 1.47 into the function to find the yy-coordinate of the vertex, which will give us the maximum value of the function.\newlinef(1.47)=1.7(1.47)2+5(1.47)0.9f(1.47) = -1.7(1.47)^2 + 5(1.47) - 0.9
  5. Calculate y-coordinate: We perform the calculations:\newlinef(1.47)=1.7(2.1609)+7.350.9f(1.47) = -1.7(2.1609) + 7.35 - 0.9\newlinef(1.47)=3.67353+7.350.9f(1.47) = -3.67353 + 7.35 - 0.9\newlinef(1.47)=3.676470.9f(1.47) = 3.67647 - 0.9\newlinef(1.47)=2.77647f(1.47) = 2.77647
  6. Round maximum value: Finally, we round the maximum value to the nearest hundredth.\newlineMaximum value of f(x)2.78f(x) \approx 2.78

More problems from Find trigonometric functions using a calculator