Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the maximum value of the function 
f(x)=-0.6x^(2)+3.5 x-13 to the nearest hundredth.
Answer:

Find the maximum value of the function f(x)=0.6x2+3.5x13 f(x)=-0.6 x^{2}+3.5 x-13 to the nearest hundredth.\newlineAnswer:

Full solution

Q. Find the maximum value of the function f(x)=0.6x2+3.5x13 f(x)=-0.6 x^{2}+3.5 x-13 to the nearest hundredth.\newlineAnswer:
  1. Find Vertex: To find the maximum value of the quadratic function f(x)=0.6x2+3.5x13f(x) = -0.6x^2 + 3.5x - 13, we need to find the vertex of the parabola. Since the coefficient of x2x^2 is negative, the parabola opens downwards, and the vertex will give us the maximum value. The xx-coordinate of the vertex can be found using the formula b2a-\frac{b}{2a}, where aa is the coefficient of x2x^2 and bb is the coefficient of xx.
  2. Calculate x-coordinate: First, we calculate the x-coordinate of the vertex using the formula b2a-\frac{b}{2a}. Here, a=0.6a = -0.6 and b=3.5b = 3.5.
    x-coordinate of vertex = b2a-\frac{b}{2a} = 3.52×0.6-\frac{3.5}{2 \times -0.6} = 3.51.2-\frac{3.5}{-1.2} = 22.916666916666...
  3. Round xx-coordinate: Now, we round the xx-coordinate to the nearest hundredth, which gives us 2.922.92.
  4. Find y-coordinate: Next, we need to find the y-coordinate of the vertex by substituting x=2.92x = 2.92 into the function f(x)f(x).f(2.92)=0.6(2.92)2+3.5(2.92)13f(2.92) = -0.6(2.92)^2 + 3.5(2.92) - 13
  5. Perform calculations: We perform the calculations:\newlinef(2.92)=0.6(8.5264)+10.2213f(2.92) = -0.6(8.5264) + 10.22 - 13\newlinef(2.92)=5.11584+10.2213f(2.92) = -5.11584 + 10.22 - 13\newlinef(2.92)=5.1041613f(2.92) = 5.10416 - 13\newlinef(2.92)=7.89584f(2.92) = -7.89584
  6. Round y-coordinate: Finally, we round the y-coordinate to the nearest hundredth to find the maximum value of the function.\newlineMaximum value of f(x)7.90f(x) \approx -7.90

More problems from Find trigonometric functions using a calculator