Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the line's slope and a point on the line.

y+1=(2)/(3)(x-1)

Find the line's slope and a point on the line.\newliney+1=23(x1) y+1=\frac{2}{3}(x-1)

Full solution

Q. Find the line's slope and a point on the line.\newliney+1=23(x1) y+1=\frac{2}{3}(x-1)
  1. Rewrite Equation: Rewrite the equation in slope-intercept form y=mx+by = mx + b to identify the slope and y-intercept.\newliney+1=(23)(x1)y + 1 = \left(\frac{2}{3}\right)(x - 1)\newliney=(23)x(23)1y = \left(\frac{2}{3}\right)x - \left(\frac{2}{3}\right) - 1\newliney=(23)x(23)(33)y = \left(\frac{2}{3}\right)x - \left(\frac{2}{3}\right) - \left(\frac{3}{3}\right)\newliney=(23)x(53)y = \left(\frac{2}{3}\right)x - \left(\frac{5}{3}\right)
  2. Identify Slope: Identify the slope mm from the equation y=23x53y = \frac{2}{3}x - \frac{5}{3}.\newlineSlope, m=23m = \frac{2}{3}
  3. Find Point on Line: Identify a point on the line using the y-intercept found in the equation.\newlineThe y-intercept is at y=53y = -\frac{5}{3}, which corresponds to the point (0,53)(0, -\frac{5}{3}) on the y-axis.