Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the line's slope and a point on the line.

y-1=-(1)/(3)(x+5)

Find the line's slope and a point on the line.\newliney1=13(x+5) y-1=-\frac{1}{3}(x+5)

Full solution

Q. Find the line's slope and a point on the line.\newliney1=13(x+5) y-1=-\frac{1}{3}(x+5)
  1. Rewrite equation: Rewrite the equation in slope-intercept form y=mx+by = mx + b to identify the slope and y-intercept.\newliney1=(13)(x+5)y - 1 = -\left(\frac{1}{3}\right)(x + 5)\newliney=(13)x(13)(5)+1y = -\left(\frac{1}{3}\right)x - \left(\frac{1}{3}\right)(5) + 1\newliney=(13)x53+1y = -\left(\frac{1}{3}\right)x - \frac{5}{3} + 1\newliney=(13)x23y = -\left(\frac{1}{3}\right)x - \frac{2}{3}
  2. Identify slope: Identify the slope mm from the equation y=mx+by = mx + b.\newlineSlope mm = 13-\frac{1}{3}
  3. Identify point: Identify a point on the line using the y-intercept ( extit{b}).\newlineThe y-intercept is at y=23y = -\frac{2}{3} when x=0x = 0.\newlineSo, the point (0,23)(0, -\frac{2}{3}) is on the line.

More problems from Roots of rational numbers