Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the limit. 
qquad

lim_(x rarr oo)(ln x)^(2//x)
A) 1
B) 0
C) 2
D) 
e^(2)

Find the limit. \newlinelimx(lnx)2x\lim_{x \to \infty}(\ln x)^{\frac{2}{x}}\newlineA) 11\newlineB) 00\newlineC) 22\newlineD) e2e^{2}

Full solution

Q. Find the limit. \newlinelimx(lnx)2x\lim_{x \to \infty}(\ln x)^{\frac{2}{x}}\newlineA) 11\newlineB) 00\newlineC) 22\newlineD) e2e^{2}
  1. Recognize and Simplify Exponent: Recognize the form of the limit and simplify the exponent. limx(lnx)2x\lim_{x \rightarrow \infty}(\ln x)^{\frac{2}{x}} can be rewritten using the property of exponents as eln((lnx)2x)e^{\ln((\ln x)^{\frac{2}{x}})}.
  2. Further Simplify Exponent: Simplify the exponent further.\newlineln((lnx)2x)=2xln(lnx)\ln((\ln x)^{\frac{2}{x}}) = \frac{2}{x} \cdot \ln(\ln x).
  3. Behavior of ln(lnx)\ln(\ln x): Analyze the behavior of ln(lnx)\ln(\ln x) as xx approaches infinity.\newlineln(lnx)\ln(\ln x) increases as xx increases, but at a slower rate than lnx\ln x.
  4. Limit Analysis: Consider the limit of (2x)ln(lnx)(\frac{2}{x}) \cdot \ln(\ln x) as xx approaches infinity. Since ln(lnx)\ln(\ln x) grows slower than lnx\ln x and 2x\frac{2}{x} approaches 00, the product (2x)ln(lnx)(\frac{2}{x}) \cdot \ln(\ln x) approaches 00.
  5. Apply Exponential Limit: Apply the limit to the exponential function.\newlinelimxe(2xln(lnx))=e0=1\lim_{x \to \infty} e^{\left(\frac{2}{x} \cdot \ln(\ln x)\right)} = e^0 = 1.