Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=root(5)(5x).

f^(-1)(x)=(x^(5))/(3125)

f^(-1)(x)=(x^(5))/(5)

f^(-1)(x)=5x^(5)

f^(-1)(x)=3125x^(5)

Find the inverse function of the function f(x)=5x5 f(x)=\sqrt[5]{5 x} .\newlinef1(x)=x53125 f^{-1}(x)=\frac{x^{5}}{3125} \newlinef1(x)=x55 f^{-1}(x)=\frac{x^{5}}{5} \newlinef1(x)=5x5 f^{-1}(x)=5 x^{5} \newlinef1(x)=3125x5 f^{-1}(x)=3125 x^{5}

Full solution

Q. Find the inverse function of the function f(x)=5x5 f(x)=\sqrt[5]{5 x} .\newlinef1(x)=x53125 f^{-1}(x)=\frac{x^{5}}{3125} \newlinef1(x)=x55 f^{-1}(x)=\frac{x^{5}}{5} \newlinef1(x)=5x5 f^{-1}(x)=5 x^{5} \newlinef1(x)=3125x5 f^{-1}(x)=3125 x^{5}
  1. Write function as yy: To find the inverse function, we first write the function as y=5x5y = \sqrt[5]{5x}.
  2. Express fifth root as power: Next, we express the fifth root as a power: y=(5x)15y = (5x)^{\frac{1}{5}}.
  3. Swap xx and yy: To find the inverse, we swap xx and yy, so we have x=(5y)15x = (5y)^{\frac{1}{5}}.
  4. Raise both sides to power of 55: Now we want to solve for yy. To do this, we raise both sides of the equation to the power of 55 to eliminate the fifth root: x5=(5y)155x^5 = (5y)^{\frac{1}{5} \cdot 5}.
  5. Simplify right side: Simplifying the right side, we get x5=5yx^5 = 5y.
  6. Isolate yy: To isolate yy, we divide both sides by 55: y=x55y = \frac{x^5}{5}.
  7. Find inverse function: Now we have the inverse function: f1(x)=x55.f^{-1}(x) = \frac{x^5}{5}.

More problems from Multiplication with rational exponents