Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=root(3)(5x).

f^(-1)(x)=(x^(2))/(25)

f^(-1)(x)=(x^(3))/(125)

f^(-1)(x)=(x^(3))/(5)

f^(-1)(x)=(x^(2))/(5)

Find the inverse function of the function f(x)=5x3 f(x)=\sqrt[3]{5 x} .\newlinef1(x)=x225 f^{-1}(x)=\frac{x^{2}}{25} \newlinef1(x)=x3125 f^{-1}(x)=\frac{x^{3}}{125} \newlinef1(x)=x35 f^{-1}(x)=\frac{x^{3}}{5} \newlinef1(x)=x25 f^{-1}(x)=\frac{x^{2}}{5}

Full solution

Q. Find the inverse function of the function f(x)=5x3 f(x)=\sqrt[3]{5 x} .\newlinef1(x)=x225 f^{-1}(x)=\frac{x^{2}}{25} \newlinef1(x)=x3125 f^{-1}(x)=\frac{x^{3}}{125} \newlinef1(x)=x35 f^{-1}(x)=\frac{x^{3}}{5} \newlinef1(x)=x25 f^{-1}(x)=\frac{x^{2}}{5}
  1. Replace with yy: To find the inverse function, we start by replacing f(x)f(x) with yy:y=5x3y = \sqrt[3]{5x}
  2. Interchange roles to solve: Next, we interchange the roles of xx and yy to solve for the new yy, which will give us the inverse function:\newlinex=5y3x = \sqrt[3]{5y}
  3. Isolate y by cubing: Now, we need to isolate y. To do this, we will cube both sides of the equation to eliminate the cube root:\newlinex3=(5y)33x^3 = (5y)^{\frac{3}{3}}\newlinex3=5yx^3 = 5y
  4. Divide by 55: Divide both sides by 55 to solve for yy:y=x35y = \frac{x^3}{5}
  5. Write inverse function: Now that we have solved for yy, we can write the inverse function. Replace yy with f1(x)f^{-1}(x) to denote the inverse function:\newlinef1(x)=x35f^{-1}(x) = \frac{x^3}{5}

More problems from Multiplication with rational exponents