Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=-(8x)/(9).

f^(-1)(x)=(8x)/(9)

f^(-1)(x)=-(9x)/(8)

f^(-1)(x)=(9x)/(8)

f^(-1)(x)=-(8x)/(9)

Find the inverse function of the function f(x)=8x9 f(x)=-\frac{8 x}{9} .\newlinef1(x)=8x9 f^{-1}(x)=\frac{8 x}{9} \newlinef1(x)=9x8 f^{-1}(x)=-\frac{9 x}{8} \newlinef1(x)=9x8 f^{-1}(x)=\frac{9 x}{8} \newlinef1(x)=8x9 f^{-1}(x)=-\frac{8 x}{9}

Full solution

Q. Find the inverse function of the function f(x)=8x9 f(x)=-\frac{8 x}{9} .\newlinef1(x)=8x9 f^{-1}(x)=\frac{8 x}{9} \newlinef1(x)=9x8 f^{-1}(x)=-\frac{9 x}{8} \newlinef1(x)=9x8 f^{-1}(x)=\frac{9 x}{8} \newlinef1(x)=8x9 f^{-1}(x)=-\frac{8 x}{9}
  1. Understand Inverse Function: Understand the concept of an inverse function. The inverse function of f(x)f(x), denoted as f1(x)f^{-1}(x), is a function that reverses the effect of f(x)f(x). If f(x)f(x) takes an input xx and produces an output yy, then f1(x)f^{-1}(x) takes yy as an input and produces the original xx as an output. To find the inverse function, we need to solve the equation y=8x9y = -\frac{8x}{9} for xx in terms of yy.
  2. Write Original Function: Write the original function with yy as the output.\newlineLet y=f(x)y = f(x), so we have:\newliney=8x9y = -\frac{8x}{9}
  3. Swap xx and yy: Swap xx and yy to find the inverse function.\newlineTo find the inverse, we switch the roles of xx and yy, so we get:\newlinex=8y9x = -\frac{8y}{9}
  4. Solve for y: Solve for y in terms of x.\newlineNow we need to solve the equation for y:\newlinex=8y9x = -\frac{8y}{9}\newlineMultiply both sides by 98-\frac{9}{8} to isolate y:\newliney = \left(-\frac{\(9\)}{\(8\)}\right)x
  5. Write Inverse Function: Write the inverse function.\(\newlineThe inverse function, f1(x)f^{-1}(x), is then:\newlinef1(x)=98xf^{-1}(x) = \frac{-9}{8}x

More problems from Multiplication with rational exponents