Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=-(8x)/(3).

f^(-1)(x)=(3)/(8x)

f^(-1)(x)=(3x)/(8)

f^(-1)(x)=-(3x)/(8)

f^(-1)(x)=-(3)/(8x)

Find the inverse function of the function f(x)=8x3 f(x)=-\frac{8 x}{3} .\newlinef1(x)=38x f^{-1}(x)=\frac{3}{8 x} \newlinef1(x)=3x8 f^{-1}(x)=\frac{3 x}{8} \newlinef1(x)=3x8 f^{-1}(x)=-\frac{3 x}{8} \newlinef1(x)=38x f^{-1}(x)=-\frac{3}{8 x}

Full solution

Q. Find the inverse function of the function f(x)=8x3 f(x)=-\frac{8 x}{3} .\newlinef1(x)=38x f^{-1}(x)=\frac{3}{8 x} \newlinef1(x)=3x8 f^{-1}(x)=\frac{3 x}{8} \newlinef1(x)=3x8 f^{-1}(x)=-\frac{3 x}{8} \newlinef1(x)=38x f^{-1}(x)=-\frac{3}{8 x}
  1. Replace with yy: To find the inverse function, we start by replacing f(x)f(x) with yy:y=8x3y = -\frac{8x}{3}
  2. Swap x and y: Next, we swap x and y to find the inverse function:\newlinex=8y3x = -\frac{8y}{3}
  3. Solve for y: Now, we solve for y to get the inverse function. Multiply both sides by 38-\frac{3}{8} to isolate y:\newliney=(38)xy = \left(-\frac{3}{8}\right)x
  4. Write inverse function: We can now write the inverse function as: f1(x)=38xf^{-1}(x) = \frac{-3}{8}x

More problems from Multiplication with rational exponents