Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=(5x)^(-(9)/(5)) on the domain 
x > 0.

f^(-1)(x)=((x)/(5))^((5)/(9))

f^(-1)(x)=(x^(-(5)/(9)))/(5)

f^(-1)(x)=((x)/(5))^(-(5)/(9))

f^(-1)(x)=(x^((5)/(9)))/(5)

Find the inverse function of the function f(x)=(5x)95 f(x)=(5 x)^{-\frac{9}{5}} on the domain x>0 .\newlinef1(x)=(x5)59 f^{-1}(x)=\left(\frac{x}{5}\right)^{\frac{5}{9}} \newlinef1(x)=x595 f^{-1}(x)=\frac{x^{-\frac{5}{9}}}{5} \newlinef1(x)=(x5)59 f^{-1}(x)=\left(\frac{x}{5}\right)^{-\frac{5}{9}} \newlinef1(x)=x595 f^{-1}(x)=\frac{x^{\frac{5}{9}}}{5}

Full solution

Q. Find the inverse function of the function f(x)=(5x)95 f(x)=(5 x)^{-\frac{9}{5}} on the domain x>0 x>0 .\newlinef1(x)=(x5)59 f^{-1}(x)=\left(\frac{x}{5}\right)^{\frac{5}{9}} \newlinef1(x)=x595 f^{-1}(x)=\frac{x^{-\frac{5}{9}}}{5} \newlinef1(x)=(x5)59 f^{-1}(x)=\left(\frac{x}{5}\right)^{-\frac{5}{9}} \newlinef1(x)=x595 f^{-1}(x)=\frac{x^{\frac{5}{9}}}{5}
  1. Write function as yy: To find the inverse function, we first write the function as y=(5x)95y = (5x)^{-\frac{9}{5}}.
  2. Swap xx and yy: Next, we swap xx and yy to find the inverse function, so we have x=(5y)(95)x = (5y)^{-(\frac{9}{5})}.
  3. Solve for y: Now, we solve for yy. To do this, we raise both sides of the equation to the power of (59)-\left(\frac{5}{9}\right) to get rid of the negative exponent on the right side. This gives us x(59)=5yx^{-\left(\frac{5}{9}\right)} = 5y.

More problems from Multiplication with rational exponents