Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=5x^(-(7)/(3)) on the domain 
x > 0.

f^(-1)(x)=(x^(-(3)/(7)))/(5)

f^(-1)(x)=(x^(-(7)/(3)))/(5)

f^(-1)(x)=((x)/(5))^(-(7)/(3))

f^(-1)(x)=((x)/(5))^(-(3)/(7))

Find the inverse function of the function f(x)=5x73 f(x)=5 x^{-\frac{7}{3}} on the domain x>0 .\newlinef1(x)=x375 f^{-1}(x)=\frac{x^{-\frac{3}{7}}}{5} \newlinef1(x)=x735 f^{-1}(x)=\frac{x^{-\frac{7}{3}}}{5} \newlinef1(x)=(x5)73 f^{-1}(x)=\left(\frac{x}{5}\right)^{-\frac{7}{3}} \newlinef1(x)=(x5)37 f^{-1}(x)=\left(\frac{x}{5}\right)^{-\frac{3}{7}}

Full solution

Q. Find the inverse function of the function f(x)=5x73 f(x)=5 x^{-\frac{7}{3}} on the domain x>0 x>0 .\newlinef1(x)=x375 f^{-1}(x)=\frac{x^{-\frac{3}{7}}}{5} \newlinef1(x)=x735 f^{-1}(x)=\frac{x^{-\frac{7}{3}}}{5} \newlinef1(x)=(x5)73 f^{-1}(x)=\left(\frac{x}{5}\right)^{-\frac{7}{3}} \newlinef1(x)=(x5)37 f^{-1}(x)=\left(\frac{x}{5}\right)^{-\frac{3}{7}}
  1. Understand Function & Domain: Understand the function and its domain.\newlineThe given function is f(x)=5x(7/3)f(x) = 5x^{(-7/3)}, and it is defined for x > 0. To find the inverse function, we need to solve for xx in terms of yy, where y=f(x)y = f(x).
  2. Replace with yy: Replace f(x)f(x) with yy to prepare for finding the inverse.\newlineLet y=5x(7/3)y = 5x^{(-7/3)}. Our goal is to express xx in terms of yy.
  3. Isolate x Term: Isolate the term with the variable xx. To isolate xx, we first divide both sides of the equation by 55. y5=x(73)\frac{y}{5} = x^{(-\frac{7}{3})}
  4. Raise to Power: Raise both sides of the equation to the power of 37-\frac{3}{7} to cancel the exponent on xx.(y5)37=(x73)37\left(\frac{y}{5}\right)^{-\frac{3}{7}} = \left(x^{-\frac{7}{3}}\right)^{-\frac{3}{7}}
  5. Simplify Equation: Simplify the right side of the equation.\newlineSince the exponents on the right side are inverse operations, they cancel each other out, leaving us with xx.\newline(y/5)(3/7)=x(y/5)^{(-3/7)} = x
  6. Write Inverse Function: Write the inverse function.\newlineThe inverse function, denoted by f1(x)f^{-1}(x), is then given by:\newlinef1(x)=(x5)37f^{-1}(x) = \left(\frac{x}{5}\right)^{-\frac{3}{7}}

More problems from Multiplication with rational exponents