Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=(5x)^((5)/(9)) on the domain 
x >= 0.

f^(-1)(x)=((x)/(5))^(-(9)/(5))

f^(-1)(x)=((x)/(5))^((9)/(5))

f^(-1)(x)=(x^((9)/(5)))/(5)

f^(-1)(x)=(x^(-(9)/(5)))/(5)

Find the inverse function of the function f(x)=(5x)59 f(x)=(5 x)^{\frac{5}{9}} on the domain x0 x \geq 0 .\newlinef1(x)=(x5)95 f^{-1}(x)=\left(\frac{x}{5}\right)^{-\frac{9}{5}} \newlinef1(x)=(x5)95 f^{-1}(x)=\left(\frac{x}{5}\right)^{\frac{9}{5}} \newlinef1(x)=x955 f^{-1}(x)=\frac{x^{\frac{9}{5}}}{5} \newlinef1(x)=x955 f^{-1}(x)=\frac{x^{-\frac{9}{5}}}{5}

Full solution

Q. Find the inverse function of the function f(x)=(5x)59 f(x)=(5 x)^{\frac{5}{9}} on the domain x0 x \geq 0 .\newlinef1(x)=(x5)95 f^{-1}(x)=\left(\frac{x}{5}\right)^{-\frac{9}{5}} \newlinef1(x)=(x5)95 f^{-1}(x)=\left(\frac{x}{5}\right)^{\frac{9}{5}} \newlinef1(x)=x955 f^{-1}(x)=\frac{x^{\frac{9}{5}}}{5} \newlinef1(x)=x955 f^{-1}(x)=\frac{x^{-\frac{9}{5}}}{5}
  1. Replace with yy: To find the inverse function, we start by replacing f(x)f(x) with yy:y=(5x)59y = (5x)^{\frac{5}{9}}
  2. Interchange xx and yy: Next, we interchange xx and yy to solve for the new yy, which will be the inverse function: x=(5y)59x = (5y)^{\frac{5}{9}}
  3. Raise to power of 95\frac{9}{5}: Now, we raise both sides of the equation to the power of 95\frac{9}{5} to eliminate the exponent on the right side:\newlinex95=5yx^{\frac{9}{5}} = 5y
  4. Divide by 55: We then divide both sides by 55 to solve for yy:y=x(9/5)5y = \frac{x^{(9/5)}}{5}
  5. Replace with f1(x)f^{-1}(x): Finally, we replace yy with f1(x)f^{-1}(x) to denote the inverse function:\newlinef1(x)=x955f^{-1}(x) = \frac{x^{\frac{9}{5}}}{5}

More problems from Multiplication with rational exponents