Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=4x^((9)/(7)) on the domain 
x >= 0.

f^(-1)(x)=((x)/(4))^(-(7)/(9))

f^(-1)(x)=((x)/(4))^((7)/(9))

f^(-1)(x)=(x^(-(7)/(9)))/(4)

f^(-1)(x)=(x^((7)/(9)))/(4)

Find the inverse function of the function f(x)=4x97 f(x)=4 x^{\frac{9}{7}} on the domain x0 x \geq 0 .\newlinef1(x)=(x4)79 f^{-1}(x)=\left(\frac{x}{4}\right)^{-\frac{7}{9}} \newlinef1(x)=(x4)79 f^{-1}(x)=\left(\frac{x}{4}\right)^{\frac{7}{9}} \newlinef1(x)=x794 f^{-1}(x)=\frac{x^{-\frac{7}{9}}}{4} \newlinef1(x)=x794 f^{-1}(x)=\frac{x^{\frac{7}{9}}}{4}

Full solution

Q. Find the inverse function of the function f(x)=4x97 f(x)=4 x^{\frac{9}{7}} on the domain x0 x \geq 0 .\newlinef1(x)=(x4)79 f^{-1}(x)=\left(\frac{x}{4}\right)^{-\frac{7}{9}} \newlinef1(x)=(x4)79 f^{-1}(x)=\left(\frac{x}{4}\right)^{\frac{7}{9}} \newlinef1(x)=x794 f^{-1}(x)=\frac{x^{-\frac{7}{9}}}{4} \newlinef1(x)=x794 f^{-1}(x)=\frac{x^{\frac{7}{9}}}{4}
  1. Understand the problem: Understand the problem.\newlineWe need to find the inverse function of f(x)=4x(9/7)f(x) = 4x^{(9/7)}. The inverse function, denoted as f1(x)f^{-1}(x), will undo the operation performed by f(x)f(x). To find the inverse, we will switch the roles of xx and yy and solve for yy.
  2. Write original function: Write the original function with yy instead of f(x)f(x).\newlineLet y=4x(9/7)y = 4x^{(9/7)}. This is the first step in finding the inverse function.
  3. Swap xx and yy: Swap xx and yy to find the inverse.\newlineNow, we replace yy with xx and xx with yy to get x=4y(9/7)x = 4y^{(9/7)}.
  4. Solve for y: Solve for y.\newlineTo isolate yy, we need to get rid of the coefficient 44 and the exponent (9/7)(9/7). We start by dividing both sides by 44, which gives us x/4=y(9/7)x/4 = y^{(9/7)}.
  5. Take to power: Take both sides to the power of (7/9)(7/9) to cancel the exponent on yy. Raise both sides of the equation to the power of (7/9)(7/9) to get (x/4)(7/9)=y(x/4)^{(7/9)} = y.
  6. Write inverse function: Write the inverse function.\newlineNow that we have yy by itself, we can write the inverse function as f1(x)=(x4)79f^{-1}(x) = \left(\frac{x}{4}\right)^{\frac{7}{9}}.

More problems from Multiplication with rational exponents