Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=(4x)^((9)/(5)) on the domain 
x >= 0.

f^(-1)(x)=(x^((5)/(9)))/(4)

f^(-1)(x)=((x)/(4))^((5)/(9))

f^(-1)(x)=(x^((9)/(5)))/(4)

f^(-1)(x)=((x)/(4))^((9)/(5))

Find the inverse function of the function f(x)=(4x)95 f(x)=(4 x)^{\frac{9}{5}} on the domain x0 x \geq 0 .\newlinef1(x)=x594 f^{-1}(x)=\frac{x^{\frac{5}{9}}}{4} \newlinef1(x)=(x4)59 f^{-1}(x)=\left(\frac{x}{4}\right)^{\frac{5}{9}} \newlinef1(x)=x954 f^{-1}(x)=\frac{x^{\frac{9}{5}}}{4} \newlinef1(x)=(x4)95 f^{-1}(x)=\left(\frac{x}{4}\right)^{\frac{9}{5}}

Full solution

Q. Find the inverse function of the function f(x)=(4x)95 f(x)=(4 x)^{\frac{9}{5}} on the domain x0 x \geq 0 .\newlinef1(x)=x594 f^{-1}(x)=\frac{x^{\frac{5}{9}}}{4} \newlinef1(x)=(x4)59 f^{-1}(x)=\left(\frac{x}{4}\right)^{\frac{5}{9}} \newlinef1(x)=x954 f^{-1}(x)=\frac{x^{\frac{9}{5}}}{4} \newlinef1(x)=(x4)95 f^{-1}(x)=\left(\frac{x}{4}\right)^{\frac{9}{5}}
  1. Rewrite with y: To find the inverse function, we need to switch the roles of xx and yy in the original function and then solve for yy. Let's start by rewriting the function with yy:y=(4x)95y = (4x)^{\frac{9}{5}}
  2. Switch x and y: Now, we switch x and y to find the inverse function:\newlinex=(4y)95x = (4y)^{\frac{9}{5}}
  3. Isolate y: To solve for y, we need to isolate y on one side of the equation. We start by raising both sides of the equation to the power of 59\frac{5}{9} to cancel out the exponent on the right side: (x)59=((4y)95)59(x)^{\frac{5}{9}} = ((4y)^{\frac{9}{5}})^{\frac{5}{9}}
  4. Raise to power: When we raise a power to a power, we multiply the exponents. In this case, (95)×(59)=1(\frac{9}{5}) \times (\frac{5}{9}) = 1, so we are left with:(x)59=4y(x)^{\frac{5}{9}} = 4y
  5. Divide by 44: Now, we divide both sides by 44 to solve for yy:y=x(5/9)4y = \frac{x^{(5/9)}}{4}
  6. Find inverse function: We have found the inverse function, which we denote as f1(x)f^{-1}(x):\newlinef1(x)=x594f^{-1}(x) = \frac{x^{\frac{5}{9}}}{4}

More problems from Multiplication with rational exponents