Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=4x^(-(7)/(3)) on the domain 
x > 0.

f^(-1)(x)=((x)/(4))^(-(3)/(7))

f^(-1)(x)=(x^(-(3)/(7)))/(4)

f^(-1)(x)=((x)/(4))^(-(7)/(3))

f^(-1)(x)=(x^(-(7)/(3)))/(4)

Find the inverse function of the function f(x)=4x73 f(x)=4 x^{-\frac{7}{3}} on the domain x>0 .\newlinef1(x)=(x4)37 f^{-1}(x)=\left(\frac{x}{4}\right)^{-\frac{3}{7}} \newlinef1(x)=x374 f^{-1}(x)=\frac{x^{-\frac{3}{7}}}{4} \newlinef1(x)=(x4)73 f^{-1}(x)=\left(\frac{x}{4}\right)^{-\frac{7}{3}} \newlinef1(x)=x734 f^{-1}(x)=\frac{x^{-\frac{7}{3}}}{4}

Full solution

Q. Find the inverse function of the function f(x)=4x73 f(x)=4 x^{-\frac{7}{3}} on the domain x>0 x>0 .\newlinef1(x)=(x4)37 f^{-1}(x)=\left(\frac{x}{4}\right)^{-\frac{3}{7}} \newlinef1(x)=x374 f^{-1}(x)=\frac{x^{-\frac{3}{7}}}{4} \newlinef1(x)=(x4)73 f^{-1}(x)=\left(\frac{x}{4}\right)^{-\frac{7}{3}} \newlinef1(x)=x734 f^{-1}(x)=\frac{x^{-\frac{7}{3}}}{4}
  1. Understand function and domain: Understand the function and its domain.\newlineThe given function is f(x)=4x(7/3)f(x) = 4x^{(-7/3)}, and it is defined for x > 0. To find the inverse function, we need to solve for xx in terms of yy, where y=f(x)y = f(x).
  2. Replace with yy: Replace f(x)f(x) with yy to prepare for finding the inverse.\newlineLet y=4x(7/3)y = 4x^{(-7/3)}. Our goal is to express xx in terms of yy.
  3. Isolate variable x: Isolate the term with the variable x.\newlineTo isolate xx, we first divide both sides of the equation by 44:\newliney4=x(73).\frac{y}{4} = x^{(-\frac{7}{3})}.
  4. Take to power: Take both sides to the power of 37-\frac{3}{7} to get rid of the negative exponent.\newline(x73)37=(y4)37\left(x^{-\frac{7}{3}}\right)^{-\frac{3}{7}} = \left(\frac{y}{4}\right)^{-\frac{3}{7}}.
  5. Simplify left side: Simplify the left side of the equation using the property of exponents (am)n=amn(a^{m})^{n} = a^{m*n}.\newlinex=(y4)(37)x = (\frac{y}{4})^{(-\frac{3}{7})}.
  6. Write inverse function: Write the inverse function.\newlineThe inverse function, denoted by f1(x)f^{-1}(x), is then:\newlinef1(x)=(x4)37f^{-1}(x) = \left(\frac{x}{4}\right)^{-\frac{3}{7}}.

More problems from Multiplication with rational exponents