Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=4x^((5)/(3)) on the domain 
x >= 0.

f^(-1)(x)=((x)/(4))^((3)/(5))

f^(-1)(x)=(x^(-(3)/(5)))/(4)

f^(-1)(x)=(x^((3)/(5)))/(4)

f^(-1)(x)=((x)/(4))^(-(3)/(5))

Find the inverse function of the function f(x)=4x53 f(x)=4 x^{\frac{5}{3}} on the domain x0 x \geq 0 .\newlinef1(x)=(x4)35 f^{-1}(x)=\left(\frac{x}{4}\right)^{\frac{3}{5}} \newlinef1(x)=x354 f^{-1}(x)=\frac{x^{-\frac{3}{5}}}{4} \newlinef1(x)=x354 f^{-1}(x)=\frac{x^{\frac{3}{5}}}{4} \newlinef1(x)=(x4)35 f^{-1}(x)=\left(\frac{x}{4}\right)^{-\frac{3}{5}}

Full solution

Q. Find the inverse function of the function f(x)=4x53 f(x)=4 x^{\frac{5}{3}} on the domain x0 x \geq 0 .\newlinef1(x)=(x4)35 f^{-1}(x)=\left(\frac{x}{4}\right)^{\frac{3}{5}} \newlinef1(x)=x354 f^{-1}(x)=\frac{x^{-\frac{3}{5}}}{4} \newlinef1(x)=x354 f^{-1}(x)=\frac{x^{\frac{3}{5}}}{4} \newlinef1(x)=(x4)35 f^{-1}(x)=\left(\frac{x}{4}\right)^{-\frac{3}{5}}
  1. Understand function & domain: Understand the function and its domain.\newlineThe given function is f(x)=4x(5/3)f(x) = 4x^{(5/3)}, and the domain is x0x \geq 0. To find the inverse function, we need to solve for xx in terms of yy, where y=f(x)y = f(x).
  2. Replace with yy: Replace f(x)f(x) with yy to prepare for finding the inverse.\newlineLet y=4x(5/3)y = 4x^{(5/3)}. We will solve this equation for xx.
  3. Isolate x term: Isolate the term containing xx.\newlineTo isolate xx, we first divide both sides of the equation by 44.\newliney4=x53\frac{y}{4} = x^{\frac{5}{3}}
  4. Raise to power: Raise both sides of the equation to the power of (35)(\frac{3}{5}) to cancel the exponent on xx.(y4)(35)=(x(53))(35)(\frac{y}{4})^{(\frac{3}{5})} = (x^{(\frac{5}{3})})^{(\frac{3}{5})}
  5. Simplify right side: Simplify the right side of the equation using the property of exponents (am)n=amn(a^{m})^{n} = a^{m*n}.\newline(y4)35=x(53)(35)(\frac{y}{4})^{\frac{3}{5}} = x^{(\frac{5}{3})\cdot(\frac{3}{5})}\newline(y4)35=x1(\frac{y}{4})^{\frac{3}{5}} = x^{1}\newline(y4)35=x(\frac{y}{4})^{\frac{3}{5}} = x
  6. Write inverse function: Write the inverse function.\newlineThe inverse function is f1(x)=(x4)35f^{-1}(x) = \left(\frac{x}{4}\right)^{\frac{3}{5}}.

More problems from Multiplication with rational exponents