Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=(3x)^((7)/(5)) on the domain 
x >= 0.

f^(-1)(x)=3x^((5)/(7))

f^(-1)(x)=(x^((5)/(7)))/(3)

f^(-1)(x)=((x)/(3))^((5)/(7))

f^(-1)(x)=(3x)^((5)/(7))

Find the inverse function of the function f(x)=(3x)75 f(x)=(3 x)^{\frac{7}{5}} on the domain x0 x \geq 0 .\newlinef1(x)=3x57 f^{-1}(x)=3 x^{\frac{5}{7}} \newlinef1(x)=x573 f^{-1}(x)=\frac{x^{\frac{5}{7}}}{3} \newlinef1(x)=(x3)57 f^{-1}(x)=\left(\frac{x}{3}\right)^{\frac{5}{7}} \newlinef1(x)=(3x)57 f^{-1}(x)=(3 x)^{\frac{5}{7}}

Full solution

Q. Find the inverse function of the function f(x)=(3x)75 f(x)=(3 x)^{\frac{7}{5}} on the domain x0 x \geq 0 .\newlinef1(x)=3x57 f^{-1}(x)=3 x^{\frac{5}{7}} \newlinef1(x)=x573 f^{-1}(x)=\frac{x^{\frac{5}{7}}}{3} \newlinef1(x)=(x3)57 f^{-1}(x)=\left(\frac{x}{3}\right)^{\frac{5}{7}} \newlinef1(x)=(3x)57 f^{-1}(x)=(3 x)^{\frac{5}{7}}
  1. Rewrite with y: To find the inverse function, we need to switch the roles of xx and yy in the original function and then solve for yy. Let's start by rewriting the function with yy:
    f(x)=(3x)75f(x) = (3x)^{\frac{7}{5}}
    y=(3x)75y = (3x)^{\frac{7}{5}}
    Now we switch xx and yy:
    x=(3y)75x = (3y)^{\frac{7}{5}}
  2. Switch x and y: Next, we need to isolate yy. To do this, we raise both sides of the equation to the reciprocal of 75\frac{7}{5}, which is 57\frac{5}{7}:\newline(x)57=((3y)75)57(x)^{\frac{5}{7}} = ((3y)^{\frac{7}{5}})^{\frac{5}{7}}
  3. Isolate yy: When we raise a power to a power, we multiply the exponents. In this case, (75)×(57)=1\left(\frac{7}{5}\right) \times \left(\frac{5}{7}\right) = 1, so we are left with:x57=3yx^{\frac{5}{7}} = 3y
  4. Divide by 33: Now we divide both sides by 33 to solve for yy:y=(x)573y = \frac{{(x)^{\frac{5}{7}}}}{3}
  5. Final Inverse Function: We have found the inverse function. We can write it as:\newlinef1(x)=(x)573f^{-1}(x) = \frac{(x)^{\frac{5}{7}}}{3}

More problems from Multiplication with rational exponents