Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=(3x)^(-(5)/(3)) on the domain 
x > 0.

f^(-1)(x)=((x)/(3))^((3)/(5))

f^(-1)(x)=(x^((3)/(5)))/(3)

f^(-1)(x)=((x)/(3))^(-(3)/(5))

f^(-1)(x)=(x^(-(3)/(5)))/(3)

Find the inverse function of the function f(x)=(3x)53 f(x)=(3 x)^{-\frac{5}{3}} on the domain x>0 .\newlinef1(x)=(x3)35 f^{-1}(x)=\left(\frac{x}{3}\right)^{\frac{3}{5}} \newlinef1(x)=x353 f^{-1}(x)=\frac{x^{\frac{3}{5}}}{3} \newlinef1(x)=(x3)35 f^{-1}(x)=\left(\frac{x}{3}\right)^{-\frac{3}{5}} \newlinef1(x)=x353 f^{-1}(x)=\frac{x^{-\frac{3}{5}}}{3}

Full solution

Q. Find the inverse function of the function f(x)=(3x)53 f(x)=(3 x)^{-\frac{5}{3}} on the domain x>0 x>0 .\newlinef1(x)=(x3)35 f^{-1}(x)=\left(\frac{x}{3}\right)^{\frac{3}{5}} \newlinef1(x)=x353 f^{-1}(x)=\frac{x^{\frac{3}{5}}}{3} \newlinef1(x)=(x3)35 f^{-1}(x)=\left(\frac{x}{3}\right)^{-\frac{3}{5}} \newlinef1(x)=x353 f^{-1}(x)=\frac{x^{-\frac{3}{5}}}{3}
  1. Write function as yy: To find the inverse function, we first write the function as y=(3x)53y = (3x)^{-\frac{5}{3}}.
  2. Swap xx and yy: Next, we swap xx and yy to find the inverse function. This gives us x=(3y)(53)x = (3y)^{-(\frac{5}{3})}.
  3. Raise both sides: Now, we solve for yy. To do this, we raise both sides of the equation to the power of (35)(-\frac{3}{5}) to get rid of the negative exponent on the right side. This gives us x(35)=3yx^{-(\frac{3}{5})} = 3y.
  4. Divide to isolate yy: Next, we divide both sides of the equation by 33 to isolate yy. This gives us y=x(35)3y = \frac{x^{-(\frac{3}{5})}}{3}.
  5. Take reciprocal of exponent: We can also write the inverse function in an equivalent form by taking the reciprocal of the exponent. This gives us y=(x3)35y = \left(\frac{x}{3}\right)^{\frac{3}{5}}.

More problems from Multiplication with rational exponents