Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=2x^((3)/(5)) on the domain 
x >= 0.

f^(-1)(x)=((x)/(2))^((5)/(3))

f^(-1)(x)=((x)/(2))^(-(5)/(3))

f^(-1)(x)=(x^(-(5)/(3)))/(2)

f^(-1)(x)=(x^((5)/(3)))/(2)

Find the inverse function of the function f(x)=2x35 f(x)=2 x^{\frac{3}{5}} on the domain x0 x \geq 0 .\newlinef1(x)=(x2)53 f^{-1}(x)=\left(\frac{x}{2}\right)^{\frac{5}{3}} \newlinef1(x)=(x2)53 f^{-1}(x)=\left(\frac{x}{2}\right)^{-\frac{5}{3}} \newlinef1(x)=x532 f^{-1}(x)=\frac{x^{-\frac{5}{3}}}{2} \newlinef1(x)=x532 f^{-1}(x)=\frac{x^{\frac{5}{3}}}{2}

Full solution

Q. Find the inverse function of the function f(x)=2x35 f(x)=2 x^{\frac{3}{5}} on the domain x0 x \geq 0 .\newlinef1(x)=(x2)53 f^{-1}(x)=\left(\frac{x}{2}\right)^{\frac{5}{3}} \newlinef1(x)=(x2)53 f^{-1}(x)=\left(\frac{x}{2}\right)^{-\frac{5}{3}} \newlinef1(x)=x532 f^{-1}(x)=\frac{x^{-\frac{5}{3}}}{2} \newlinef1(x)=x532 f^{-1}(x)=\frac{x^{\frac{5}{3}}}{2}
  1. Understand function and domain: Understand the function and its domain.\newlineThe given function is f(x)=2x(3/5)f(x) = 2x^{(3/5)}, and the domain is x0x \geq 0. To find the inverse function, we need to solve for xx in terms of yy, where y=f(x)y = f(x).
  2. Replace with yy: Replace f(x)f(x) with yy to prepare for finding the inverse.\newlineLet y=2x(3/5)y = 2x^{(3/5)}. Our goal is to express xx in terms of yy.
  3. Isolate term with exponent: Isolate the term with the exponent.\newlineDivide both sides of the equation by 22 to isolate the xx term.\newliney2=x35\frac{y}{2} = x^{\frac{3}{5}}
  4. Raise to reciprocal: Raise both sides of the equation to the reciprocal of 35\frac{3}{5} to solve for xx.(y2)53=(x35)53\left(\frac{y}{2}\right)^{\frac{5}{3}} = \left(x^{\frac{3}{5}}\right)^{\frac{5}{3}}
  5. Simplify right side: Simplify the right side of the equation.\newlineSince (am)n=amn(a^{m})^{n} = a^{m*n}, we have:\newline(y2)53=x(35)(53)(\frac{y}{2})^{\frac{5}{3}} = x^{(\frac{3}{5})*(\frac{5}{3})}\newline(y2)53=x1(\frac{y}{2})^{\frac{5}{3}} = x^{1}\newline(y2)53=x(\frac{y}{2})^{\frac{5}{3}} = x
  6. Write inverse function: Write the inverse function.\newlineThe inverse function is f1(x)=(x2)53f^{-1}(x) = \left(\frac{x}{2}\right)^{\frac{5}{3}}.

More problems from Multiplication with rational exponents