Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=2root(5)(x).

f^(-1)(x)=-(x^(5))/(32)

f^(-1)(x)=(x^(5))/(32)

f^(-1)(x)=-(x^(5))/(2)

f^(-1)(x)=(x^(5))/(2)

Find the inverse function of the function f(x)=2x5 f(x)=2 \sqrt[5]{x} .\newlinef1(x)=x532 f^{-1}(x)=-\frac{x^{5}}{32} \newlinef1(x)=x532 f^{-1}(x)=\frac{x^{5}}{32} \newlinef1(x)=x52 f^{-1}(x)=-\frac{x^{5}}{2} \newlinef1(x)=x52 f^{-1}(x)=\frac{x^{5}}{2}

Full solution

Q. Find the inverse function of the function f(x)=2x5 f(x)=2 \sqrt[5]{x} .\newlinef1(x)=x532 f^{-1}(x)=-\frac{x^{5}}{32} \newlinef1(x)=x532 f^{-1}(x)=\frac{x^{5}}{32} \newlinef1(x)=x52 f^{-1}(x)=-\frac{x^{5}}{2} \newlinef1(x)=x52 f^{-1}(x)=\frac{x^{5}}{2}
  1. Understand function form: Understand the function and its form.\newlineThe given function is f(x)=25(x)f(x) = 2\sqrt{5}(x), which means f(x)=2×x1/5f(x) = 2 \times x^{1/5}. To find the inverse function, we need to solve for xx in terms of yy, where y=f(x)y = f(x).
  2. Replace with yy: Replace f(x)f(x) with yy to prepare for finding the inverse.\newlineLet y=2x15y = 2 \cdot x^{\frac{1}{5}}.
  3. Solve for x: Solve for x in terms of y.\newlineTo isolate x, we first divide both sides by 22.\newliney2=x15\frac{y}{2} = x^{\frac{1}{5}}
  4. Raise to power 55: Raise both sides to the power of 55 to eliminate the fifth root.\newline$\left(\frac{y}{\(2\)}\right)^\(5\) = \left(x^{\frac{\(1\)}{\(5\)}}\right)^\(5\)
  5. Replace with \(f^{-1}(x)\): Simplify both sides.\(\left(\frac{y}{2}\right)^5 = x\)
  6. Expand expression: Replace \(y\) with \(f^{-1}(x)\) to express the inverse function.\(\newline\)\(f^{-1}(x) = \left(\frac{x}{2}\right)^5\)
  7. Calculate \(2^5\): Expand the expression.\(\newline\)\(f^{-1}(x) = \frac{x^5}{2^5}\)
  8. Write final expression: Calculate \(2^5\).\(\newline\)\(2^5 = 32\)
  9. Write final expression: Calculate \(2^5\).\(\newline\)\(2^5 = 32\) Write the final expression for the inverse function.\(\newline\)\(f^{-1}(x) = \frac{x^5}{32}\)

More problems from Multiplication with rational exponents