Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=(2)/(9x).

f^(-1)(x)=(9)/(2x)

f^(-1)(x)=-(2)/(9x)

f^(-1)(x)=(2)/(9x)

f^(-1)(x)=-(9)/(2x)

Find the inverse function of the function f(x)=29x f(x)=\frac{2}{9 x} .\newlinef1(x)=92x f^{-1}(x)=\frac{9}{2 x} \newlinef1(x)=29x f^{-1}(x)=-\frac{2}{9 x} \newlinef1(x)=29x f^{-1}(x)=\frac{2}{9 x} \newlinef1(x)=92x f^{-1}(x)=-\frac{9}{2 x}

Full solution

Q. Find the inverse function of the function f(x)=29x f(x)=\frac{2}{9 x} .\newlinef1(x)=92x f^{-1}(x)=\frac{9}{2 x} \newlinef1(x)=29x f^{-1}(x)=-\frac{2}{9 x} \newlinef1(x)=29x f^{-1}(x)=\frac{2}{9 x} \newlinef1(x)=92x f^{-1}(x)=-\frac{9}{2 x}
  1. Understand the problem: Understand the problem.\newlineWe need to find the inverse function of f(x)=29xf(x) = \frac{2}{9x}. The inverse function, denoted as f1(x)f^{-1}(x), is the function that reverses the effect of f(x)f(x). To find the inverse, we swap the roles of xx and yy in the original function and solve for yy.
  2. Write with y: Write the original function with y.\newlineLet y=f(x)y = f(x), so we have y=29xy = \frac{2}{9x}.
  3. Swap xx and yy: Swap xx and yy to find the inverse.\newlineReplace yy with xx and xx with yy to get x=29yx = \frac{2}{9y}.
  4. Solve for y: Solve for y.\newlineTo solve for y, we multiply both sides by 9y9y and then divide by xx to isolate yy.\newline9y×x=29y \times x = 2\newliney=29xy = \frac{2}{9x}
  5. Write inverse function: Write the inverse function.\newlineThe inverse function is f1(x)=yf^{-1}(x) = y, so we have f1(x)=29xf^{-1}(x) = \frac{2}{9x}.

More problems from Multiplication with rational exponents