Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=(1)/(5)x+9.

f^(-1)(x)=5x-9

f^(-1)(x)=5x-45

f^(-1)(x)=(1)/(5)x-9

f^(-1)(x)=(1)/(5)x-45

Find the inverse function of the function f(x)=15x+9 f(x)=\frac{1}{5} x+9 .\newlinef1(x)=5x9 f^{-1}(x)=5 x-9 \newlinef1(x)=5x45 f^{-1}(x)=5 x-45 \newlinef1(x)=15x9 f^{-1}(x)=\frac{1}{5} x-9 \newlinef1(x)=15x45 f^{-1}(x)=\frac{1}{5} x-45

Full solution

Q. Find the inverse function of the function f(x)=15x+9 f(x)=\frac{1}{5} x+9 .\newlinef1(x)=5x9 f^{-1}(x)=5 x-9 \newlinef1(x)=5x45 f^{-1}(x)=5 x-45 \newlinef1(x)=15x9 f^{-1}(x)=\frac{1}{5} x-9 \newlinef1(x)=15x45 f^{-1}(x)=\frac{1}{5} x-45
  1. Replace f(x)f(x) with yy: To find the inverse function, we first replace f(x)f(x) with yy for simplicity.\newliney=15x+9y = \frac{1}{5}x + 9
  2. Swap x and y: Next, we swap x and y to find the inverse function. x=15y+9x = \frac{1}{5}y + 9
  3. Solve for y: Now, we solve for y. Subtract 99 from both sides to isolate the term with yy on one side.\newline$x - \(9\) = \left(\frac{\(1\)}{\(5\)}\right)y
  4. Multiply by \(5\): Multiply both sides by \(5\) to solve for \(y\).\[5(x - 9) = y\]
  5. Distribute the \(5\): Distribute the \(5\) on the left side of the equation. \(5x - 45 = y\)
  6. Replace \(y\) with \(f^{-1}(x)\): Replace \(y\) with \(f^{-1}(x)\) to denote the inverse function.\(\newline\)\(f^{-1}(x) = 5x - 45\)

More problems from Find the vertex of the transformed function