Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=(1)/(2)x+4.

f^(-1)(x)=(1)/(2)x-8

f^(-1)(x)=(1)/(2)x-4

f^(-1)(x)=2x-8

f^(-1)(x)=2x-4

Find the inverse function of the function f(x)=12x+4 f(x)=\frac{1}{2} x+4 .\newlinef1(x)=12x8 f^{-1}(x)=\frac{1}{2} x-8 \newlinef1(x)=12x4 f^{-1}(x)=\frac{1}{2} x-4 \newlinef1(x)=2x8 f^{-1}(x)=2 x-8 \newlinef1(x)=2x4 f^{-1}(x)=2 x-4

Full solution

Q. Find the inverse function of the function f(x)=12x+4 f(x)=\frac{1}{2} x+4 .\newlinef1(x)=12x8 f^{-1}(x)=\frac{1}{2} x-8 \newlinef1(x)=12x4 f^{-1}(x)=\frac{1}{2} x-4 \newlinef1(x)=2x8 f^{-1}(x)=2 x-8 \newlinef1(x)=2x4 f^{-1}(x)=2 x-4
  1. Understand the problem: Understand the problem.\newlineWe need to find the inverse function of f(x)=12x+4f(x) = \frac{1}{2}x + 4. The inverse function, denoted as f1(x)f^{-1}(x), will undo the operation done by f(x)f(x). To find the inverse, we will switch the roles of xx and yy and solve for yy.
  2. Replace with yy: Replace f(x)f(x) with yy.\newlineLet y=12x+4y = \frac{1}{2}x + 4. This is the first step in finding the inverse function.
  3. Swap x and y: Swap x and y.\newlineNow we will replace y with x and x with y to get the equation x=(12)y+4x = (\frac{1}{2})y + 4. This represents the inverse relationship.
  4. Solve for y: Solve for y.\newlineTo find yy, we need to isolate it on one side of the equation. We will start by subtracting 44 from both sides to get x4=(12)yx - 4 = (\frac{1}{2})y.
  5. Multiply by 22: Multiply both sides by 22.\newlineTo get rid of the fraction, we multiply both sides by 22. This gives us 2(x4)=y2(x - 4) = y.
  6. Distribute and simplify: Distribute and simplify.\newlineWe distribute the 22 on the left side to get 2x8=y2x - 8 = y. This is the inverse function, which we can write as f1(x)=2x8f^{-1}(x) = 2x - 8.

More problems from Multiplication with rational exponents