Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function of the function 
f(x)=(1)/(2)x+2.

f^(-1)(x)=2x-2

f^(-1)(x)=(1)/(2)x-2

f^(-1)(x)=2x-4

f^(-1)(x)=(1)/(2)x-4

Find the inverse function of the function f(x)=12x+2 f(x)=\frac{1}{2} x+2 .\newlinef1(x)=2x2 f^{-1}(x)=2 x-2 \newlinef1(x)=12x2 f^{-1}(x)=\frac{1}{2} x-2 \newlinef1(x)=2x4 f^{-1}(x)=2 x-4 \newlinef1(x)=12x4 f^{-1}(x)=\frac{1}{2} x-4

Full solution

Q. Find the inverse function of the function f(x)=12x+2 f(x)=\frac{1}{2} x+2 .\newlinef1(x)=2x2 f^{-1}(x)=2 x-2 \newlinef1(x)=12x2 f^{-1}(x)=\frac{1}{2} x-2 \newlinef1(x)=2x4 f^{-1}(x)=2 x-4 \newlinef1(x)=12x4 f^{-1}(x)=\frac{1}{2} x-4
  1. Understand the problem: Understand the problem.\newlineWe need to find the inverse function of f(x)=12x+2f(x) = \frac{1}{2}x + 2. The inverse function, denoted as f1(x)f^{-1}(x), will undo the operation done by f(x)f(x). To find the inverse, we will switch the roles of xx and yy and solve for yy.
  2. Replace with yy: Replace f(x)f(x) with yy.\newlineLet y=12x+2y = \frac{1}{2}x + 2. This is the first step in finding the inverse function.
  3. Swap xx and yy: Swap xx and yy. Now we will replace yy with xx and xx with yy to find the inverse function. So we get x=(12)y+2x = (\frac{1}{2})y + 2.
  4. Solve for y: Solve for y.\newlineTo solve for y, we need to isolate y on one side of the equation. First, we subtract 22 from both sides to get x2=(12)yx - 2 = (\frac{1}{2})y.
  5. Multiply by 22: Multiply both sides by 22.\newlineTo get yy by itself, we multiply both sides of the equation by 22. This gives us 2(x2)=y2(x - 2) = y.
  6. Distribute and simplify: Distribute and simplify.\newlineWe distribute the 22 on the left side of the equation to get 2x4=y2x - 4 = y.
  7. Write inverse function: Write the inverse function.\newlineNow that we have yy by itself, we can write the inverse function as f1(x)=2x4f^{-1}(x) = 2x - 4.

More problems from Multiplication with rational exponents