Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function in slope-intercept form 
(mx+b) :

f(x)=x-16
Answer: 
f^(-1)(x)=

Find the inverse function in slope-intercept form (mx+b) (\mathrm{mx}+\mathrm{b}) :\newlinef(x)=x16 f(x)=x-16 \newlineAnswer: f1(x)= f^{-1}(x)=

Full solution

Q. Find the inverse function in slope-intercept form (mx+b) (\mathrm{mx}+\mathrm{b}) :\newlinef(x)=x16 f(x)=x-16 \newlineAnswer: f1(x)= f^{-1}(x)=
  1. Understand Inverse Function: Understand the concept of an inverse function. An inverse function reverses the operation of the original function. If f(x)=yf(x) = y, then f1(y)=xf^{-1}(y) = x. To find the inverse function, we need to solve for xx in terms of yy.
  2. Replace with yy: Replace f(x)f(x) with yy to prepare for finding the inverse.\newliney=x16y = x - 16
  3. Swap x and y: Swap xx and yy to find the inverse function.x=y16x = y - 16
  4. Solve for y: Solve for y to get the inverse function in slope-intercept form. y=x+16y = x + 16
  5. Replace with f1(x)f^{-1}(x): Replace yy with f1(x)f^{-1}(x) to denote the inverse function.\newlinef1(x)=x+16f^{-1}(x) = x + 16

More problems from Find the vertex of the transformed function