Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function in slope-intercept form 
(mx+b) :

f(x)=5x-10
Answer: 
f^(-1)(x)=

Find the inverse function in slope-intercept form (mx+b) (\mathrm{mx}+\mathrm{b}) :\newlinef(x)=5x10 f(x)=5 x-10 \newlineAnswer: f1(x)= f^{-1}(x)=

Full solution

Q. Find the inverse function in slope-intercept form (mx+b) (\mathrm{mx}+\mathrm{b}) :\newlinef(x)=5x10 f(x)=5 x-10 \newlineAnswer: f1(x)= f^{-1}(x)=
  1. Understand Inverse Function: Understand the concept of an inverse function. An inverse function, denoted as f1(x)f^{-1}(x), swaps the xx and yy values of the original function. For the function f(x)=5x10f(x) = 5x - 10, we want to find a function that will give us the original xx value when we input the yy value from f(x)f(x).
  2. Replace with yy: Replace f(x)f(x) with yy to make the equation easier to work with.\newliney=5x10y = 5x - 10
  3. Swap x and y: Swap x and y to find the inverse function. x=5y10x = 5y - 10
  4. Solve for y: Solve for y to get the inverse function in slope-intercept form.\newlinex+10=5yx + 10 = 5y\newliney=x+105y = \frac{x + 10}{5}
  5. Simplify Inverse Function: Simplify the inverse function if necessary. \newliney=15x+2y = \frac{1}{5}x + 2\newlineThis is the inverse function in slope-intercept form.

More problems from Find the vertex of the transformed function