Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function in slope-intercept form 
(mx+b) :

f(x)=(3)/(2)x+6
Answer: 
f^(-1)(x)=

Find the inverse function in slope-intercept form (mx+b) (\mathrm{mx}+\mathrm{b}) :\newlinef(x)=32x+6 f(x)=\frac{3}{2} x+6 \newlineAnswer: f1(x)= f^{-1}(x)=

Full solution

Q. Find the inverse function in slope-intercept form (mx+b) (\mathrm{mx}+\mathrm{b}) :\newlinef(x)=32x+6 f(x)=\frac{3}{2} x+6 \newlineAnswer: f1(x)= f^{-1}(x)=
  1. Understand Inverse Function: Understand the concept of an inverse function. An inverse function, denoted as f1(x)f^{-1}(x), swaps the roles of the input and output of the original function f(x)f(x). For the inverse to exist, f(x)f(x) must be a one-to-one function, meaning that for every xx there is a unique yy, and for every yy there is a unique xx.
  2. Write Original Function: Write down the original function.\newlineThe original function is f(x)=32x+6f(x) = \frac{3}{2}x + 6.
  3. Replace with yy: Replace f(x)f(x) with yy to make the equation easier to work with.y=(32)x+6y = \left(\frac{3}{2}\right)x + 6
  4. Swap x and y: Swap x and y to find the inverse function.\newlinex=32y+6x = \frac{3}{2}y + 6
  5. Solve for Inverse: Solve for yy to get the inverse function.\newlineSubtract 66 from both sides of the equation:\newlinex6=(32)yx - 6 = \left(\frac{3}{2}\right)y\newlineMultiply both sides by 23\frac{2}{3} to isolate yy:\newline(23)(x6)=y\left(\frac{2}{3}\right)(x - 6) = y\newliney=(23)x4y = \left(\frac{2}{3}\right)x - 4
  6. Replace with f1(x)f^{-1}(x): Replace yy with f1(x)f^{-1}(x) to denote the inverse function.\newlinef1(x)=23x4f^{-1}(x) = \frac{2}{3}x - 4

More problems from Find the vertex of the transformed function