Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function in slope-intercept form 
(mx+b) :

f(x)=-(2)/(5)x+8
Answer: 
f^(-1)(x)=

Find the inverse function in slope-intercept form (mx+b) (\mathrm{mx}+\mathrm{b}) :\newlinef(x)=25x+8 f(x)=-\frac{2}{5} x+8 \newlineAnswer: f1(x)= f^{-1}(x)=

Full solution

Q. Find the inverse function in slope-intercept form (mx+b) (\mathrm{mx}+\mathrm{b}) :\newlinef(x)=25x+8 f(x)=-\frac{2}{5} x+8 \newlineAnswer: f1(x)= f^{-1}(x)=
  1. Understand Inverse Function Concept: Understand the concept of an inverse function. An inverse function, denoted as f1(x)f^{-1}(x), swaps the roles of the input and output of the original function. For the function f(x)=yf(x) = y, the inverse function answers the question: for a given yy, what xx would produce that yy?
  2. Write Original Function: Write the original function, replacing f(x)f(x) with yy for convenience.y=(25)x+8y = -\left(\frac{2}{5}\right)x + 8
  3. Swap x and y: Swap x and y to find the inverse function.\newlinex=(25)y+8x = -\left(\frac{2}{5}\right)y + 8
  4. Solve for y: Solve for y to express the inverse function in terms of x.\newlineFirst, isolate the term containing y on one side:\newline(25)y=8x(\frac{2}{5})y = 8 - x
  5. Multiply by Reciprocal: Multiply both sides by the reciprocal of the coefficient of yy to solve for yy.y=(52)(8x)y = \left(\frac{5}{2}\right)(8 - x)
  6. Distribute (5/2)(5/2): Distribute the (5/2)(5/2) across the terms in the parentheses.\newliney=(5/2)8(5/2)xy = (5/2)\cdot8 - (5/2)\cdot x\newliney=20(5/2)xy = 20 - (5/2)x
  7. Write Final Inverse Function: Write the final inverse function in slope-intercept form. f1(x)=2052xf^{-1}(x) = 20 - \frac{5}{2}x

More problems from Find the vertex of the transformed function