Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function in slope-intercept form 
(mx+b) :

f(x)=(2)/(3)x-12
Answer: 
f^(-1)(x)=

Find the inverse function in slope-intercept form (mx+b) (\mathrm{mx}+\mathrm{b}) :\newlinef(x)=23x12 f(x)=\frac{2}{3} x-12 \newlineAnswer: f1(x)= f^{-1}(x)=

Full solution

Q. Find the inverse function in slope-intercept form (mx+b) (\mathrm{mx}+\mathrm{b}) :\newlinef(x)=23x12 f(x)=\frac{2}{3} x-12 \newlineAnswer: f1(x)= f^{-1}(x)=
  1. Write Function: Write down the original function.\newlineThe original function is f(x)=23x12f(x) = \frac{2}{3}x - 12.
  2. Replace with yy: Replace f(x)f(x) with yy to make the equation easier to work with.\newliney=23x12y = \frac{2}{3}x - 12
  3. Swap x and y: To find the inverse function, we need to solve for xx in terms of yy. First, swap xx and yy in the equation.\newlinex=(23)y12x = \left(\frac{2}{3}\right)y - 12
  4. Isolate y: Solve for y by isolating it on one side of the equation. Start by adding 1212 to both sides.\newlinex+12=(23)yx + 12 = \left(\frac{2}{3}\right)y
  5. Multiply by Reciprocal: Multiply both sides by the reciprocal of (23)(\frac{2}{3}) to solve for yy.y=(32)(x+12)y = \left(\frac{3}{2}\right)(x + 12)
  6. Distribute Terms: Distribute (32)(\frac{3}{2}) to both terms inside the parentheses.\newliney=(32)x+(32)12y = (\frac{3}{2})x + (\frac{3}{2})\cdot 12
  7. Simplify Constant: Simplify the constant term (32)12(\frac{3}{2})\cdot 12.y=(32)x+18y = (\frac{3}{2})x + 18
  8. Replace with Inverse: Replace yy with f1(x)f^{-1}(x) to denote the inverse function.f1(x)=32x+18f^{-1}(x) = \frac{3}{2}x + 18

More problems from Find the vertex of the transformed function