Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the inverse function in slope-intercept form 
(mx+b) :

f(x)=-(1)/(2)x-7
Answer: 
f^(-1)(x)=

Find the inverse function in slope-intercept form (mx+b) (\mathrm{mx}+\mathrm{b}) :\newlinef(x)=12x7 f(x)=-\frac{1}{2} x-7 \newlineAnswer: f1(x)= f^{-1}(x)=

Full solution

Q. Find the inverse function in slope-intercept form (mx+b) (\mathrm{mx}+\mathrm{b}) :\newlinef(x)=12x7 f(x)=-\frac{1}{2} x-7 \newlineAnswer: f1(x)= f^{-1}(x)=
  1. Replace with yy: To find the inverse function, we first replace f(x)f(x) with yy for simplicity:\newliney=12x7y = -\frac{1}{2}x - 7
  2. Swap x and y: Next, we swap x and y to find the inverse function:\newlinex=12y7x = -\frac{1}{2}y - 7
  3. Solve for y: Now, we solve for yy to get it in the form y=mx+by = mx + b, which is the slope-intercept form. First, we add 77 to both sides of the equation:\newlinex+7=(12)yx + 7 = -\left(\frac{1}{2}\right)y
  4. Add 77: Then, we multiply both sides by 2-2 to solve for yy:2(x+7)=y-2(x + 7) = y
  5. Multiply by 2-2: Distribute the 2-2 on the left side of the equation:\newline2x14=y-2x - 14 = y
  6. Distribute 2-2: Finally, we write the inverse function with yy on the left side:\newlinef(1)(x)=2x14f^{(-1)}(x) = -2x - 14

More problems from Find the vertex of the transformed function