Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the greatest common factor.\newline3j3,9j23j^3, 9j^2\newlineWrite your answer as a constant times a product of single variables raised to exponents.\newline__\_\_

Full solution

Q. Find the greatest common factor.\newline3j3,9j23j^3, 9j^2\newlineWrite your answer as a constant times a product of single variables raised to exponents.\newline__\_\_
  1. Factorization of 3j33j^3: First find the complete factorization of 3j33j^3.\newline3=33 = 3\newlinej3=j×j×jj^3 = j \times j \times j\newline3j3=3×j×j×j3j^3 = 3 \times j \times j \times j
  2. Factorization of 9j29j^2: Now, find the complete factorization of 9j29j^2. \newline9=3×39 = 3 \times 3\newlinej2=j×jj^2 = j \times j\newline9j2=3×3×j×j9j^2 = 3 \times 3 \times j \times j
  3. Find Greatest Common Factor: We found:\newline3j3=3×j×j×j3j^3 = 3 \times j \times j \times j\newline9j2=3×3×j×j9j^2 = 3 \times 3 \times j \times j\newlineFind the greatest common factor of 3j33j^3 and 9j29j^2.\newlineCommon factors are 33, jj, and jj.\newline3×j×j=3j23 \times j \times j = 3j^2\newlineGreatest common factor: 3j23j^2