Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the binomial that completes the factorization. \newlineu3v3=()(u2+uv+v2)u^3 - v^3 = (\underline{\hspace{3cm}})(u^2 + uv + v^2)

Full solution

Q. Find the binomial that completes the factorization. \newlineu3v3=()(u2+uv+v2)u^3 - v^3 = (\underline{\hspace{3cm}})(u^2 + uv + v^2)
  1. Identify pattern: Identify the pattern of a difference of cubes. u3v3u^3 - v^3 is a difference of cubes since both u3u^3 and v3v^3 are perfect cubes.
  2. Recall formula: Recall the formula for factoring a difference of cubes.\newlineThe formula is a3b3=(ab)(a2+ab+b2)a^3 - b^3 = (a - b)(a^2 + ab + b^2).
  3. Apply formula: Apply the formula to u3v3u^3 - v^3. Using the formula, (ab)(a - b) is the binomial we need to find, where a=ua = u and b=vb = v.
  4. Write binomial: Write down the binomial.\newlineThe binomial that completes the factorization is (uv)(u - v).