Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the average value of the function 
f(x)=(8)/(x-1) from 
x=3 to 
x=7. Write your answer as the logarithm of a single number in simplest form.
Answer: 
ln(◻)

Find the average value of the function f(x)=8x1 f(x)=\frac{8}{x-1} from x=3 x=3 to x=7 x=7 . Write your answer as the logarithm of a single number in simplest form.\newlineAnswer: ln() \ln (\square)

Full solution

Q. Find the average value of the function f(x)=8x1 f(x)=\frac{8}{x-1} from x=3 x=3 to x=7 x=7 . Write your answer as the logarithm of a single number in simplest form.\newlineAnswer: ln() \ln (\square)
  1. Calculate Integral: To find the average value of a continuous function f(x)f(x) on the interval [a,b][a, b], we use the formula:\newlineAverage value = 1(ba)abf(x)dx\frac{1}{(b-a)} \int_{a}^{b} f(x) \, dx\newlineHere, a=3a = 3 and b=7b = 7, so we need to calculate the integral of f(x)=8x1f(x) = \frac{8}{x-1} from x=3x = 3 to x=7x = 7 and then divide by (ba)(b-a).
  2. Evaluate Antiderivative: First, we calculate the integral of f(x)=8x1f(x) = \frac{8}{x-1}. The antiderivative of 1x1\frac{1}{x-1} is lnx1\ln|x-1|, so the antiderivative of 8x1\frac{8}{x-1} is 8lnx18\cdot\ln|x-1|.
  3. Simplify Expression: Next, we evaluate the antiderivative from x=3x = 3 to x=7x = 7:378x1dx=[8lnx1]37\int_{3}^{7} \frac{8}{x-1} \, dx = [8\ln|x-1|]_{3}^{7}=8ln718ln31= 8\ln|7-1| - 8\ln|3-1|=8ln(6)8ln(2)= 8\ln(6) - 8\ln(2)
  4. Calculate Average Value: Now we simplify the expression:\newline8ln(6)8ln(2)=8(ln(6)ln(2))8\cdot\ln(6) - 8\cdot\ln(2) = 8\cdot(\ln(6) - \ln(2))\newlineUsing the properties of logarithms, ln(a)ln(b)=ln(ab)\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right), we get:\newline8(ln(62))=8ln(3)8\cdot(\ln(\frac{6}{2})) = 8\cdot\ln(3)
  5. Calculate Average Value: Now we simplify the expression:\newline8ln(6)8ln(2)=8(ln(6)ln(2))8\cdot\ln(6) - 8\cdot\ln(2) = 8\cdot(\ln(6) - \ln(2))\newlineUsing the properties of logarithms, ln(a)ln(b)=ln(ab)\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right), we get:\newline8(ln(62))=8ln(3)8\cdot(\ln(\frac{6}{2})) = 8\cdot\ln(3)Finally, we calculate the average value by dividing the result of the integral by (ba)(b-a), which is (73)(7-3):\newlineAverage value = 1(73)8ln(3)\frac{1}{(7-3)} \cdot 8\cdot\ln(3)\newline= 2ln(3)2\cdot\ln(3)\newline= ln(32)\ln(3^2)\newline= ln(9)\ln(9)

More problems from Find trigonometric ratios of special angles