Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
tan((pi)/(12)) exactly using an angle addition or subtraction formula.
[Hint: This diagram of special trigonometry. values may help.]
Choose 1 answer:
(A) 
(3-sqrt3)/(3+sqrt3)
(B) 
(-3-sqrt3)/(3-sqrt3)
(C) 
(3+sqrt3)/(3-sqrt3)
(D) 
(-3+sqrt3)/(3+sqrt3)

Find tan(π12) \tan \left(\frac{\pi}{12}\right) exactly using an angle addition or subtraction formula.\newline[Hint: This diagram of special trigonometry. values may help].\newlineChoose 11 answer:\newline(A) 333+3 \frac{3-\sqrt{3}}{3+\sqrt{3}} \newline(B) 3333 \frac{-3-\sqrt{3}}{3-\sqrt{3}} \newline(C) 3+333 \frac{3+\sqrt{3}}{3-\sqrt{3}} \newline(D) 3+33+3 \frac{-3+\sqrt{3}}{3+\sqrt{3}}

Full solution

Q. Find tan(π12) \tan \left(\frac{\pi}{12}\right) exactly using an angle addition or subtraction formula.\newline[Hint: This diagram of special trigonometry. values may help].\newlineChoose 11 answer:\newline(A) 333+3 \frac{3-\sqrt{3}}{3+\sqrt{3}} \newline(B) 3333 \frac{-3-\sqrt{3}}{3-\sqrt{3}} \newline(C) 3+333 \frac{3+\sqrt{3}}{3-\sqrt{3}} \newline(D) 3+33+3 \frac{-3+\sqrt{3}}{3+\sqrt{3}}
  1. Recognize the angle: Recognize that (π)/12(\pi)/12 is not a standard angle for which we have a direct trigonometric value. However, we can express (π)/12(\pi)/12 as the difference of two angles whose tangent values we know: (π)/12=(π)/4(π)/6(\pi)/12 = (\pi)/4 - (\pi)/6.
  2. Use the tangent subtraction formula: Use the tangent subtraction formula: tan(AB)=tan(A)tan(B)1+tan(A)tan(B)\tan(A - B) = \frac{\tan(A) - \tan(B)}{1 + \tan(A)\tan(B)}. Here, A=π4A = \frac{\pi}{4} and B=π6B = \frac{\pi}{6}.
  3. Find tangent values: Find the tangent values for AA and BB. We know that tan(π4)=1\tan(\frac{\pi}{4}) = 1 and tan(π6)=33\tan(\frac{\pi}{6}) = \frac{\sqrt{3}}{3}.
  4. Substitute values into formula: Substitute the values into the tangent subtraction formula: tan(π12)=tan(π4)tan(π6)1+tan(π4)tan(π6)=13/31+(1)(3/3)\tan(\frac{\pi}{12}) = \frac{\tan(\frac{\pi}{4}) - \tan(\frac{\pi}{6})}{1 + \tan(\frac{\pi}{4})\tan(\frac{\pi}{6})} = \frac{1 - \sqrt{3}/3}{1 + (1)(\sqrt{3}/3)}.
  5. Simplify the expression: Simplify the expression: tan(π12)=13/31+3/3=333+3\tan\left(\frac{\pi}{12}\right) = \frac{1 - \sqrt{3}/3}{1 + \sqrt{3}/3} = \frac{3 - \sqrt{3}}{3 + \sqrt{3}}.
  6. Rationalize the denominator: Rationalize the denominator by multiplying the numerator and the denominator by the conjugate of the denominator: (333+3)(3333)\left(\frac{3 - \sqrt{3}}{3 + \sqrt{3}}\right) \cdot \left(\frac{3 - \sqrt{3}}{3 - \sqrt{3}}\right).
  7. Perform the multiplication: Perform the multiplication: (\(3 - \sqrt{33})^22 / (33^22 - (\sqrt{33})^22) = (99 - 66\sqrt{33} + 33) / (99 - 33) = (1212 - 66\sqrt{33}) / 66.
  8. Simplify the expression: Simplify the expression: (1263)/6=23(12 - 6\sqrt{3}) / 6 = 2 - \sqrt{3}.
  9. Check the answer choices: Check the answer choices to see which one matches our result. The correct answer is (A) (33)/(3+3)(3 - \sqrt{3}) / (3 + \sqrt{3}), which simplifies to 232 - \sqrt{3} after rationalizing the denominator.

More problems from Domain and range