Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
tan((7pi)/(12)) exactly using an angle addition or subtraction formula.
[Hint: This diagram of special trigonometry. values may help.].
Choose 1 answer:
(A) 
(1-sqrt3)/(1+sqrt3)
(B) 
(-1-sqrt3)/(1-sqrt3)
(c) 
(-1+sqrt3)/(1+sqrt3)
(D) 
(1+sqrt3)/(1-sqrt3)

Find tan(7π12) \tan \left(\frac{7 \pi}{12}\right) exactly using an angle addition or subtraction formula.\newline[Hint: This diagram of special trigonometry. values may help.].\newlineChoose 11 answer:\newline(A) 131+3 \frac{1-\sqrt{3}}{1+\sqrt{3}} \newline(B) 1313 \frac{-1-\sqrt{3}}{1-\sqrt{3}} \newline(C) 1+31+3 \frac{-1+\sqrt{3}}{1+\sqrt{3}} \newline(D) 1+313 \frac{1+\sqrt{3}}{1-\sqrt{3}}

Full solution

Q. Find tan(7π12) \tan \left(\frac{7 \pi}{12}\right) exactly using an angle addition or subtraction formula.\newline[Hint: This diagram of special trigonometry. values may help.].\newlineChoose 11 answer:\newline(A) 131+3 \frac{1-\sqrt{3}}{1+\sqrt{3}} \newline(B) 1313 \frac{-1-\sqrt{3}}{1-\sqrt{3}} \newline(C) 1+31+3 \frac{-1+\sqrt{3}}{1+\sqrt{3}} \newline(D) 1+313 \frac{1+\sqrt{3}}{1-\sqrt{3}}
  1. Recognize Non-Standard Angle: Recognize that (7π)/12(7\pi)/12 is not a standard angle for which we have a direct trigonometric value. We need to express (7π)/12(7\pi)/12 as the sum or difference of angles for which we do have standard trigonometric values.
  2. Express as Sum of Angles: Notice that (7π)/12(7\pi)/12 can be written as the sum of (4π)/12(4\pi)/12 and (3π)/12(3\pi)/12, which simplifies to π/3+π/4\pi/3 + \pi/4. These are angles for which we have known trigonometric values.
  3. Apply Angle Addition Formula: Use the angle addition formula for tangent, which is tan(A+B)=tan(A)+tan(B)1tan(A)tan(B)\tan(A + B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A)\tan(B)}, where AA is π/3\pi/3 and BB is π/4\pi/4.
  4. Find Tangent Values: Find the tangent values for AA and BB. We know that tan(π3)=3\tan(\frac{\pi}{3}) = \sqrt{3} and tan(π4)=1\tan(\frac{\pi}{4}) = 1.
  5. Substitute Values: Substitute the values into the angle addition formula: tan(π3+π4)=tan(π3)+tan(π4)1tan(π3)tan(π4)=3+1131.\tan(\frac{\pi}{3} + \frac{\pi}{4}) = \frac{\tan(\frac{\pi}{3}) + \tan(\frac{\pi}{4})}{1 - \tan(\frac{\pi}{3})\tan(\frac{\pi}{4})} = \frac{\sqrt{3} + 1}{1 - \sqrt{3}\cdot 1}.
  6. Simplify Expression: Simplify the expression: (3+1)/(13)=(3+1)/(13)×((1+3)/(1+3))(\sqrt{3} + 1) / (1 - \sqrt{3}) = (\sqrt{3} + 1) / (1 - \sqrt{3}) \times ((1 + \sqrt{3}) / (1 + \sqrt{3})) to rationalize the denominator.
  7. Rationalize Denominator: Multiply the numerators and the denominators: (3+1)(1+3)/(13)(1+3)=(3+3+3+1)/(13)(\sqrt{3} + 1)(1 + \sqrt{3}) / (1 - \sqrt{3})(1 + \sqrt{3}) = (3 + \sqrt{3} + \sqrt{3} + 1) / (1 - 3).
  8. Multiply Numerators and Denominators: Simplify the numerator and the denominator: (4+23)/(2)=2(2+3)/(2)=(2+3)(4 + 2\sqrt{3}) / (-2) = 2(2 + \sqrt{3}) / (-2) = - (2 + \sqrt{3}).
  9. Final Simplified Expression: The final simplified expression is (2+3)- (2 + \sqrt{3}), which corresponds to choice (D) 1+313\frac{1 + \sqrt{3}}{1 - \sqrt{3}} if we consider the negative sign as part of the fraction.

More problems from Domain and range