Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(x rarr oo)(5x^(4)+x^(2))/(2x^(4)-x^(3)-4).
Choose 1 answer:
(A) 
(5)/(2)
(B) 0
(C) 
-(1)/(4)
(D) The limit is unbounded

Find limx5x4+x22x4x34 \lim _{x \rightarrow \infty} \frac{5 x^{4}+x^{2}}{2 x^{4}-x^{3}-4} .\newlineChoose 11 answer:\newline(A) 52 \frac{5}{2} \newline(B) 00\newline(C) 14 -\frac{1}{4} \newline(D) The limit is unbounded

Full solution

Q. Find limx5x4+x22x4x34 \lim _{x \rightarrow \infty} \frac{5 x^{4}+x^{2}}{2 x^{4}-x^{3}-4} .\newlineChoose 11 answer:\newline(A) 52 \frac{5}{2} \newline(B) 00\newline(C) 14 -\frac{1}{4} \newline(D) The limit is unbounded
  1. Divide by x4x^4: To find the limit of the given function as xx approaches infinity, we can divide each term in the numerator and the denominator by the highest power of xx present in the denominator, which is x4x^4.
  2. Simplify numerator: Divide each term in the numerator by x4x^4: (5x4/x4)+(x2/x4)=5+(1/x2)(5x^4/x^4) + (x^2/x^4) = 5 + (1/x^2)
  3. Simplify denominator: Divide each term in the denominator by x4x^4:(2x4x4)(x3x4)(4x4)=2(1x)(4x4)(\frac{2x^4}{x^4}) - (\frac{x^3}{x^4}) - (\frac{4}{x^4}) = 2 - (\frac{1}{x}) - (\frac{4}{x^4})
  4. Rewrite limit expression: Now, we rewrite the original limit expression with the simplified terms: limx5+1x221x4x4\lim_{x \rightarrow \infty} \frac{5 + \frac{1}{x^2}}{2 - \frac{1}{x} - \frac{4}{x^4}}
  5. Approach infinity: As xx approaches infinity, the terms with xx in the denominator approach zero. Therefore, 1x2\frac{1}{x^2}, 1x\frac{1}{x}, and 4x4\frac{4}{x^4} all approach zero.
  6. Simplify further: The limit expression simplifies to: limx(5+0)/(200)=52\lim_{x \rightarrow \infty} (5 + 0) / (2 - 0 - 0) = \frac{5}{2}
  7. Final result: The limit of the function as xx approaches infinity is 52\frac{5}{2}, which corresponds to answer choice (A).

More problems from Power rule