Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(h rarr0)(9*2^(1+h)-9*2^(1))/(h)
Choose 1 answer:
(A) 9
(B) 18
(C) 
18 ln(2)
(D) The limit doesn't exist

Find limh0921+h921h \lim _{h \rightarrow 0} \frac{9 \cdot 2^{1+h}-9 \cdot 2^{1}}{h} \newlineChoose 11 answer:\newline(A) 99\newline(B) 1818\newline(C) 18ln(2) 18 \ln (2) \newline(D) The limit doesn't exist

Full solution

Q. Find limh0921+h921h \lim _{h \rightarrow 0} \frac{9 \cdot 2^{1+h}-9 \cdot 2^{1}}{h} \newlineChoose 11 answer:\newline(A) 99\newline(B) 1818\newline(C) 18ln(2) 18 \ln (2) \newline(D) The limit doesn't exist
  1. Factor out common factor: Rewrite the expression by factoring out the common factor 9219\cdot2^1 from the numerator.\newlineSo, limh0(921+h921)/h=limh0921(2h1)/h\lim_{h \to 0}(9\cdot2^{1+h}-9\cdot2^{1})/h = \lim_{h \to 0}9\cdot2^1(2^h-1)/h.
  2. Simplify expression: Simplify the expression by taking 9×219\times2^1 out of the limit since it's a constant.\newlineSo, 9×21×limh02h1h.9\times2^1 \times \lim_{h \to 0}\frac{2^h-1}{h}.
  3. Calculate constant: Calculate 9×219 \times 2^1 which is 9×2=189 \times 2 = 18. So, 18×limh02h1h18 \times \lim_{h \to 0}\frac{2^h-1}{h}.
  4. Use derivative definition: Use the definition of the derivative for the function f(x)=2xf(x) = 2^x at x=1x = 1. The limit becomes 18f(1)18 \cdot f'(1) where f(x)=ln(2)2xf'(x) = \ln(2)\cdot2^x.
  5. Calculate final result: Calculate f(1)f'(1) which is extln(2)imes21=extln(2)imes2 ext{ln}(2) imes 2^1 = ext{ln}(2) imes 2. So, 18imesextln(2)imes218 imes ext{ln}(2) imes 2.

More problems from Multiply and divide rational expressions