Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find 
lim_(h rarr0)(5arcsin((2)/(3)+h)-5arcsin((2)/(3)))/(h).
Choose 1 answer:
(A) 
3sqrt5
(B) 
(sqrt5)/(3)
(C) 
(3sqrt5)/(5)
(D) The limit doesn't exist

Find limh05arcsin(23+h)5arcsin(23)h \lim _{h \rightarrow 0} \frac{5 \arcsin \left(\frac{2}{3}+h\right)-5 \arcsin \left(\frac{2}{3}\right)}{h} .\newlineChoose 11 answer:\newline(A) 35 3 \sqrt{5} \newline(B) 53 \frac{\sqrt{5}}{3} \newline(C) 355 \frac{3 \sqrt{5}}{5} \newline(D) The limit doesn't exist

Full solution

Q. Find limh05arcsin(23+h)5arcsin(23)h \lim _{h \rightarrow 0} \frac{5 \arcsin \left(\frac{2}{3}+h\right)-5 \arcsin \left(\frac{2}{3}\right)}{h} .\newlineChoose 11 answer:\newline(A) 35 3 \sqrt{5} \newline(B) 53 \frac{\sqrt{5}}{3} \newline(C) 355 \frac{3 \sqrt{5}}{5} \newline(D) The limit doesn't exist
  1. Recognize Limit Problem: First, let's recognize that this is a limit problem involving the derivative of the arcsin\arcsin function at a specific point.
  2. Derivative of arcsin(x): The derivative of arcsin(x)\arcsin(x) is 11x2\frac{1}{\sqrt{1-x^2}}. So, we can rewrite the limit as the derivative of 5arcsin(x)5\arcsin(x) at x=23x = \frac{2}{3}.
  3. Calculate Derivative at x=23x = \frac{2}{3}: The derivative of 5arcsin(x)5\arcsin(x) is 5×(11x2)5 \times \left(\frac{1}{\sqrt{1-x^2}}\right). Plugging in x=23x = \frac{2}{3}, we get 5×(11(23)2)5 \times \left(\frac{1}{\sqrt{1-\left(\frac{2}{3}\right)^2}}\right).
  4. Simplify Expression Inside Square Root: Simplify the expression inside the square root: 1(23)2=149=591 - \left(\frac{2}{3}\right)^2 = 1 - \frac{4}{9} = \frac{5}{9}.
  5. Calculate Square Root: Now, calculate the square root: 59=53\sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3}.
  6. Multiply by 55 for Derivative: Multiply by 55 to get the derivative: 5×(15/3)=5×(35)=1555 \times \left(\frac{1}{\sqrt{5}/3}\right) = 5 \times \left(\frac{3}{\sqrt{5}}\right) = \frac{15}{\sqrt{5}}.
  7. Rationalize Denominator: Simplify the expression by rationalizing the denominator: (155)(55)=1555(\frac{15}{\sqrt{5}}) \cdot (\frac{\sqrt{5}}{\sqrt{5}}) = \frac{15\sqrt{5}}{5}.
  8. Final Simplification: Finally, simplify the fraction: (155)/5=35(15\sqrt{5})/5 = 3\sqrt{5}.

More problems from Find limits of polynomials and rational functions