Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find d2tds2\frac{d^2 t}{ds^2} if t=2s(14s)2t = 2s(1 - 4s)^2

Full solution

Q. Find d2tds2\frac{d^2 t}{ds^2} if t=2s(14s)2t = 2s(1 - 4s)^2
  1. Given Function: We are given the function t=2s(14s)2t=2s(1-4s)^2. To find the second derivative of tt with respect to ss, we first need to find the first derivative dtds\frac{dt}{ds}.
  2. Find First Derivative: Using the product rule for differentiation, which states that (uv)=uv+uv(uv)' = u'v + uv', where u=2su = 2s and v=(14s)2v = (1-4s)^2, we differentiate tt with respect to ss. First, we differentiate uu with respect to ss: duds=2\frac{du}{ds} = 2. Then, we differentiate vv with respect to ss: u=2su = 2s00. Now we apply the product rule: u=2su = 2s11.
  3. Simplify First Derivative: We simplify the expression for the first derivative dtds\frac{dt}{ds}: dtds=2(18s+16s2)16s(14s)=216s+32s216s+64s2\frac{dt}{ds} = 2(1-8s+16s^2) - 16s(1-4s) = 2 - 16s + 32s^2 - 16s + 64s^2.
  4. Find Second Derivative: Combine like terms in the expression for dtds\frac{dt}{ds}: dtds=2+32s2+64s232s=2+96s232s\frac{dt}{ds} = 2 + 32s^2 + 64s^2 - 32s = 2 + 96s^2 - 32s.
  5. Differentiate Second Derivative: Now we need to find the second derivative d2tds2\frac{d^2t}{ds^2} by differentiating dtds\frac{dt}{ds} with respect to ss. d2tds2=dds(2+96s232s)=dds(2)+dds(96s2)dds(32s).\frac{d^2t}{ds^2} = \frac{d}{ds} (2 + 96s^2 - 32s) = \frac{d}{ds} (2) + \frac{d}{ds} (96s^2) - \frac{d}{ds} (32s).
  6. Differentiate Second Derivative: Now we need to find the second derivative d2tds2\frac{d^2t}{ds^2} by differentiating dtds\frac{dt}{ds} with respect to ss. d2tds2=dds(2+96s232s)=dds(2)+dds(96s2)dds(32s)\frac{d^2t}{ds^2} = \frac{d}{ds} (2 + 96s^2 - 32s) = \frac{d}{ds} (2) + \frac{d}{ds} (96s^2) - \frac{d}{ds} (32s).Differentiate each term: dds(2)=0\frac{d}{ds} (2) = 0, dds(96s2)=192s\frac{d}{ds} (96s^2) = 192s, and dds(32s)=32\frac{d}{ds} (32s) = 32. So, d2tds2=0+192s32\frac{d^2t}{ds^2} = 0 + 192s - 32.
  7. Differentiate Second Derivative: Now we need to find the second derivative d2tds2\frac{d^2t}{ds^2} by differentiating dtds\frac{dt}{ds} with respect to ss. d2tds2=dds(2+96s232s)=dds(2)+dds(96s2)dds(32s)\frac{d^2t}{ds^2} = \frac{d}{ds} (2 + 96s^2 - 32s) = \frac{d}{ds} (2) + \frac{d}{ds} (96s^2) - \frac{d}{ds} (32s). Differentiate each term: dds(2)=0\frac{d}{ds} (2) = 0, dds(96s2)=192s\frac{d}{ds} (96s^2) = 192s, and dds(32s)=32\frac{d}{ds} (32s) = 32. So, d2tds2=0+192s32\frac{d^2t}{ds^2} = 0 + 192s - 32. Simplify the expression for the second derivative: d2tds2=192s32\frac{d^2t}{ds^2} = 192s - 32.

More problems from Find the vertex of the transformed function