Q. find an expression for x in terms of e when e2=x−2x+3
Isolate fraction: Step 1: Start by isolating the fraction on one side:Given equation: e2=x−2x+3.Multiply both sides by (x−2) to clear the fraction:e2⋅(x−2)=x+3.
Expand left side: Step 2: Expand the left side: e2×x−2e2=x+3.
Bring x terms together: Step 3: Bring all x terms to one side:e2⋅x−x=2e2+3.
Factor out x: Step 4: Factor out x from the left side:x⋅(e2−1)=2e2+3.
Solve for x: Step 5: Solve for x:x=e2−12e2+3.
More problems from Factor sums and differences of cubes