Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find an angle 
theta coterminal to 
-424^(@), where 
0^(@) <= theta < 360^(@).
Answer:

Find an angle θ \theta coterminal to 424 -424^{\circ} , where 0^{\circ} \leq \theta<360^{\circ} .\newlineAnswer:

Full solution

Q. Find an angle θ \theta coterminal to 424 -424^{\circ} , where 0θ<360 0^{\circ} \leq \theta<360^{\circ} .\newlineAnswer:
  1. Add 360360 degrees: To find an angle coterminal to 424-424 degrees that is between 00 and 360360 degrees, we need to add or subtract multiples of 360360 degrees until we get an angle in the desired range. Since 424-424 degrees is negative, we will add 360360 degrees until we are within the range of 00 to 360360 degrees.
  2. Add 360360 degrees: First, add 360360 degrees to 424-424 degrees to get a new angle.\newline424-424 degrees ++ 360360 degrees == 64-64 degrees\newlineThis angle is still negative, so we need to add 360360 degrees again.
  3. Check range: Add 360360 degrees to 64-64 degrees to get the coterminal angle.\newline64-64 degrees ++ 360360 degrees == 296296 degrees\newlineThis angle is now within the desired range of 00 to 360360 degrees.
  4. Final coterminal angle: Check to ensure that 296296 degrees is indeed between 00 and 360360 degrees.\newline00 degrees \leq 296296 degrees < 360360 degrees\newlineThis is true, so 296296 degrees is the coterminal angle we were looking for.

More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity