Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find all solutions with - \frac{\pi}{2} < \theta < \frac{\pi}{2} . Give the exact answer(s) in simplest form. If there are multiple answers, separate them with commas. 7tan(θ)+7=0 - 7\tan(\theta) + 7 = 0

Full solution

Q. Find all solutions with π2<θ<π2 - \frac{\pi}{2} < \theta < \frac{\pi}{2} . Give the exact answer(s) in simplest form. If there are multiple answers, separate them with commas. 7tan(θ)+7=0 - 7\tan(\theta) + 7 = 0
  1. Simplify equation: Simplify the equation 7tan(θ)+7=0-7\tan(\theta) + 7 = 0 to find tan(θ)\tan(\theta).\newline7tan(θ)+7=0-7\tan(\theta) + 7 = 0\newline7tan(θ)=7-7\tan(\theta) = -7\newlinetan(θ)=1\tan(\theta) = 1
  2. Find tan(θ):\tan(\theta): Determine the values of θ\theta where tan(θ)=1\tan(\theta) = 1 within the interval π2-\frac{\pi}{2} to π2\frac{\pi}{2}.\newlinetan(θ)=1\tan(\theta) = 1 at θ=π4\theta = \frac{\pi}{4} and θ=3π4\theta = -3\frac{\pi}{4}; however, 3π4-3\frac{\pi}{4} is not within the interval π2-\frac{\pi}{2} to π2\frac{\pi}{2}.\newlineSo, θ=π4\theta = \frac{\pi}{4} is the only solution in the given interval.

More problems from Solve trigonometric equations