Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find all angles, 
0^(@) <= theta < 360^(@), that satisfy the equation below, to the nearest tenth of a degree.

6tan^(2)theta=11 tan theta+7
Answer: 
theta=

Find all angles, 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newline6tan2θ=11tanθ+7 6 \tan ^{2} \theta=11 \tan \theta+7 \newlineAnswer: θ= \theta=

Full solution

Q. Find all angles, 0θ<360 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newline6tan2θ=11tanθ+7 6 \tan ^{2} \theta=11 \tan \theta+7 \newlineAnswer: θ= \theta=
  1. Move to Quadratic Form: Write the given equation in a quadratic form by moving all terms to one side.\newline6tan2(θ)11tan(θ)7=06\tan^2(\theta) - 11\tan(\theta) - 7 = 0
  2. Factor and Solve: Factor the quadratic equation to find the values of tan(θ)\tan(\theta).(3tan(θ)+2)(2tan(θ)7)=0 (3\tan(\theta) + 2)(2\tan(\theta) - 7) = 0
  3. Solve for tan(θ)\tan(\theta): Set each factor equal to zero and solve for tan(θ)\tan(\theta).3tan(θ)+2=03\tan(\theta) + 2 = 0 or 2tan(θ)7=02\tan(\theta) - 7 = 0
  4. Calculate Angles for 23-\frac{2}{3}: Solve the first equation for tan(θ)\tan(\theta).\newlinetan(θ)=23\tan(\theta) = -\frac{2}{3}
  5. Calculate Angles for 72\frac{7}{2}: Solve the second equation for tan(θ)\tan(\theta).\newlinetan(θ)=72\tan(\theta) = \frac{7}{2}
  6. Calculate Angles for 7/27/2: Solve the second equation for tan(θ)\tan(\theta).\newlinetan(θ)=72\tan(\theta) = \frac{7}{2}Find the angles that correspond to tan(θ)=23\tan(\theta) = -\frac{2}{3} in the range 0^\circ \leq \theta < 360^\circ.\newlineUsing a calculator, we find that θ180arctan(23)\theta \approx 180^\circ - \arctan\left(\frac{2}{3}\right) and θ360arctan(23)\theta \approx 360^\circ - \arctan\left(\frac{2}{3}\right).
  7. Calculate Angles for 72\frac{7}{2}: Solve the second equation for tan(θ)\tan(\theta).
    tan(θ)=72\tan(\theta) = \frac{7}{2}Find the angles that correspond to tan(θ)=23\tan(\theta) = -\frac{2}{3} in the range 0° \leq \theta < 360°.
    Using a calculator, we find that θ180°arctan(23)\theta \approx 180° - \arctan(\frac{2}{3}) and θ360°arctan(23)\theta \approx 360° - \arctan(\frac{2}{3}).Calculate the angles for tan(θ)=23\tan(\theta) = -\frac{2}{3}.
    θ180°arctan(23)180°33.7°146.3°\theta \approx 180° - \arctan(\frac{2}{3}) \approx 180° - 33.7° \approx 146.3°
    θ360°arctan(23)360°33.7°326.3°\theta \approx 360° - \arctan(\frac{2}{3}) \approx 360° - 33.7° \approx 326.3°
  8. Calculate Angles for 72\frac{7}{2}: Solve the second equation for tan(θ)\tan(\theta).tan(θ)=72\tan(\theta) = \frac{7}{2}Find the angles that correspond to tan(θ)=23\tan(\theta) = -\frac{2}{3} in the range 0^\circ \leq \theta < 360^\circ. Using a calculator, we find that θ180arctan(23)\theta \approx 180^\circ - \arctan(\frac{2}{3}) and θ360arctan(23)\theta \approx 360^\circ - \arctan(\frac{2}{3}).Calculate the angles for tan(θ)=23\tan(\theta) = -\frac{2}{3}. θ180arctan(23)18033.7146.3\theta \approx 180^\circ - \arctan(\frac{2}{3}) \approx 180^\circ - 33.7^\circ \approx 146.3^\circ θ360arctan(23)36033.7326.3\theta \approx 360^\circ - \arctan(\frac{2}{3}) \approx 360^\circ - 33.7^\circ \approx 326.3^\circFind the angles that correspond to tan(θ)=72\tan(\theta) = \frac{7}{2} in the range 0^\circ \leq \theta < 360^\circ. Using a calculator, we find that tan(θ)\tan(\theta)22 and tan(θ)\tan(\theta)33.
  9. Calculate Angles for 72\frac{7}{2}: Solve the second equation for tan(θ)\tan(\theta).
    tan(θ)=72\tan(\theta) = \frac{7}{2}Find the angles that correspond to tan(θ)=23\tan(\theta) = -\frac{2}{3} in the range 0^\circ \leq \theta < 360^\circ.
    Using a calculator, we find that θ180arctan(23)\theta \approx 180^\circ - \arctan(\frac{2}{3}) and θ360arctan(23)\theta \approx 360^\circ - \arctan(\frac{2}{3}).Calculate the angles for tan(θ)=23\tan(\theta) = -\frac{2}{3}.
    θ180arctan(23)18033.7146.3\theta \approx 180^\circ - \arctan(\frac{2}{3}) \approx 180^\circ - 33.7^\circ \approx 146.3^\circ
    θ360arctan(23)36033.7326.3\theta \approx 360^\circ - \arctan(\frac{2}{3}) \approx 360^\circ - 33.7^\circ \approx 326.3^\circFind the angles that correspond to tan(θ)=72\tan(\theta) = \frac{7}{2} in the range 0^\circ \leq \theta < 360^\circ.
    Using a calculator, we find that tan(θ)\tan(\theta)22 and tan(θ)\tan(\theta)33.Calculate the angles for tan(θ)=72\tan(\theta) = \frac{7}{2}.
    tan(θ)\tan(\theta)55
    tan(θ)\tan(\theta)66

More problems from Csc, sec, and cot of special angles