Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find all angles, 
0^(@) <= theta < 360^(@), that satisfy the equation below, to the nearest tenth of a degree.

16cot^(2)theta-1=0
Answer: 
theta=

Find all angles, 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newline16cot2θ1=0 16 \cot ^{2} \theta-1=0 \newlineAnswer: θ= \theta=

Full solution

Q. Find all angles, 0θ<360 0^{\circ} \leq \theta<360^{\circ} , that satisfy the equation below, to the nearest tenth of a degree.\newline16cot2θ1=0 16 \cot ^{2} \theta-1=0 \newlineAnswer: θ= \theta=
  1. Solve for cot2(θ)\cot^2(\theta): Solve the equation for cot2(θ)\cot^2(\theta).
    16cot2(θ)1=016\cot^2(\theta) - 1 = 0
    Add 11 to both sides of the equation.
    16cot2(θ)=116\cot^2(\theta) = 1
    Divide both sides by 1616.
    cot2(θ)=116\cot^2(\theta) = \frac{1}{16}
    Take the square root of both sides.
    cot(θ)=±14\cot(\theta) = \pm\frac{1}{4}
  2. Find positive cotangent angles: Find the angles that correspond to the positive cotangent value.\newlinecot(θ)=14\cot(\theta) = \frac{1}{4}\newlineSince cotangent is the reciprocal of tangent, we have:\newlinetan(θ)=4\tan(\theta) = 4\newlineUse the arctangent function to find the angle whose tangent is 44.\newlineθ=arctan(4)\theta = \arctan(4)\newlineUse a calculator to find the value of θ\theta.\newlineθ75.96\theta \approx 75.96 degrees\newlineHowever, cotangent is positive in the first and third quadrants, so we need to find the angle in the third quadrant as well.\newlineθ=180+75.96\theta = 180 + 75.96\newlineθ255.96\theta \approx 255.96 degrees
  3. Find negative cotangent angles: Find the angles that correspond to the negative cotangent value.\newlinecot(θ)=14\cot(\theta) = -\frac{1}{4}\newlineSince cotangent is the reciprocal of tangent, we have:\newlinetan(θ)=4\tan(\theta) = -4\newlineUse the arctangent function to find the angle whose tangent is 4-4.\newlineθ=arctan(4)\theta = \arctan(-4)\newlineUse a calculator to find the value of θ\theta.\newlineθ75.96\theta \approx -75.96 degrees\newlineHowever, we need angles between 00 and 360360 degrees, so we add 180180 degrees to find the angle in the second quadrant.\newlineθ=18075.96\theta = 180 - 75.96\newlineθ104.04\theta \approx 104.04 degrees\newlineAnd add 360360 degrees to find the angle in the fourth quadrant.\newlinetan(θ)=4\tan(\theta) = -411\newlinetan(θ)=4\tan(\theta) = -422 degrees
  4. List all satisfying angles: List all the angles that satisfy the equation.\newlineWe have found four angles that satisfy the equation:\newlineθ75.96\theta \approx 75.96 degrees (first quadrant)\newlineθ255.96\theta \approx 255.96 degrees (third quadrant)\newlineθ104.04\theta \approx 104.04 degrees (second quadrant)\newlineθ284.04\theta \approx 284.04 degrees (fourth quadrant)\newlineRound each angle to the nearest tenth of a degree.\newlineθ76.0\theta \approx 76.0 degrees\newlineθ256.0\theta \approx 256.0 degrees\newlineθ104.0\theta \approx 104.0 degrees\newlineθ284.0\theta \approx 284.0 degrees

More problems from Evaluate variable expressions for number sequences