Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor the trinomial:

3x^(2)+7x+2
Answer:

Factor the trinomial:\newline3x2+7x+2 3 x^{2}+7 x+2 \newlineAnswer:

Full solution

Q. Factor the trinomial:\newline3x2+7x+2 3 x^{2}+7 x+2 \newlineAnswer:
  1. Identify aa, bb, cc: Identify aa, bb, and cc in the trinomial 3x2+7x+23x^2 + 7x + 2. Compare 3x2+7x+23x^2 + 7x + 2 with ax2+bx+cax^2 + bx + c. a=3a = 3 bb00 bb11
  2. Find two numbers: Find two numbers whose product is aca*c (32=63*2 = 6) and whose sum is bb (77).\newlineWe need to find two numbers that multiply to 66 and add up to 77.\newlineThe numbers 66 and 11 satisfy these conditions because:\newline61=66 * 1 = 6\newline6+1=76 + 1 = 7
  3. Rewrite middle term: Rewrite the middle term 7x7x using the two numbers found in Step 22.\newlineWe can express 7x7x as 6x+x6x + x.\newlineSo, the trinomial 3x2+7x+23x^2 + 7x + 2 can be rewritten as 3x2+6x+x+23x^2 + 6x + x + 2.
  4. Factor by grouping: Factor by grouping.\newlineGroup the terms into two pairs: (3x2+6x)(3x^2 + 6x) and (x+2)(x + 2).\newlineFactor out the common factor from each pair.\newlineFrom the first pair, we can factor out 3x3x: 3x(x+2)3x(x + 2).\newlineFrom the second pair, we can factor out 11: 1(x+2)1(x + 2).\newlineNow we have 3x(x+2)+1(x+2)3x(x + 2) + 1(x + 2).
  5. Factor out common binomial: Factor out the common binomial factor (x+2)(x + 2).\newlineWe can now factor out (x+2)(x + 2) from both terms.\newlineThe factored form is (x+2)(3x+1)(x + 2)(3x + 1).