Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor the trinomial:

2x^(2)+9x+10
Answer:

Factor the trinomial:\newline2x2+9x+10 2 x^{2}+9 x+10 \newlineAnswer:

Full solution

Q. Factor the trinomial:\newline2x2+9x+10 2 x^{2}+9 x+10 \newlineAnswer:
  1. Identify Coefficients: Identify the coefficients of the quadratic trinomial.\newlineThe quadratic trinomial is in the form ax2+bx+cax^2 + bx + c, where aa, bb, and cc are constants.\newlineFor 2x2+9x+102x^2 + 9x + 10, we have:\newlinea=2a = 2\newlineb=9b = 9\newlinec=10c = 10
  2. Find Multiplying Numbers: Find two numbers that multiply to aca*c (210=202*10 = 20) and add up to bb (99).\newlineWe need to find two numbers, mm and nn, such that:\newlinemn=20m * n = 20\newlinem+n=9m + n = 9\newlineThe numbers that satisfy these conditions are 55 and 44, because:\newline210=202*10 = 2000\newline210=202*10 = 2011
  3. Write Middle Term: Write the middle term 9x9x as the sum of two terms using the numbers found in the previous step.\newlineWe can express 9x9x as 5x+4x5x + 4x, which are the coefficients we found that add up to 99.\newlineSo, the trinomial can be rewritten as:\newline2x2+5x+4x+102x^2 + 5x + 4x + 10
  4. Factor by Grouping: Factor by grouping.\newlineGroup the terms into two pairs:\newline(2x2+5x)+(4x+10)(2x^2 + 5x) + (4x + 10)\newlineNow factor out the common factors from each pair:\newlinex(2x+5)+2(2x+5)x(2x + 5) + 2(2x + 5)
  5. Factor Common Binomial: Factor out the common binomial factor.\newlineWe see that (2x+5)(2x + 5) is a common factor in both terms, so we can factor it out:\newline(2x+5)(x+2)(2x + 5)(x + 2)