Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor the trinomial:

2x^(2)+11 x+12
Answer:

Factor the trinomial:\newline2x2+11x+12 2 x^{2}+11 x+12 \newlineAnswer:

Full solution

Q. Factor the trinomial:\newline2x2+11x+12 2 x^{2}+11 x+12 \newlineAnswer:
  1. Identify aa, bb, cc: Identify aa, bb, and cc in the trinomial 2x2+11x+122x^2 + 11x + 12. Compare 2x2+11x+122x^2 + 11x + 12 with ax2+bx+cax^2 + bx + c. a=2a = 2 bb00 bb11
  2. Find product and sum: Find two numbers whose product is aca*c (212=242*12 = 24) and whose sum is bb (1111).\newlineWe need to find two numbers that multiply to 2424 and add up to 1111.\newlineThe numbers 88 and 33 satisfy these conditions because:\newline83=248 * 3 = 24\newline8+3=118 + 3 = 11
  3. Rewrite middle term: Rewrite the middle term 11x11x using the two numbers found in Step 22.\newlineExpress 11x11x as 8x+3x8x + 3x.\newlineThe trinomial becomes 2x2+8x+3x+122x^2 + 8x + 3x + 12.
  4. Factor by grouping: Factor by grouping.\newlineGroup the terms as follows: (2x2+8x)+(3x+12)(2x^2 + 8x) + (3x + 12).\newlineFactor out the common factors from each group.\newlineFrom 2x2+8x2x^2 + 8x, factor out 2x2x to get 2x(x+4)2x(x + 4).\newlineFrom 3x+123x + 12, factor out 33 to get 3(x+4)3(x + 4).\newlineNow we have 2x(x+4)+3(x+4)2x(x + 4) + 3(x + 4).
  5. Factor out common binomial: Factor out the common binomial factor (x+4)(x + 4).\newlineThe factored form is (x+4)(2x+3)(x + 4)(2x + 3).